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APPENDIX A:  Lemma 1, and Theorems 1 and 2 

In this appendix we delineate the market outcomes when the new and old products are sold by two 

different firms (Theorem 1) or by the same firm (Theorem 2).  Figure A-1 illustrates the results of 

Theorem 1 for z = 0.3 and k = 0.2 (Frame a), k = 0.5 (Frame b), and k = 0.8 (Frame c).  Let 

( )j j j jp c qπ = −  denote firm j’s profit, { },  Nj O∈ .  In preparation for these theorems, we give Lemma 

1, which establishes the quantities sold as a function of prices.  Note that ( ),j j O Np pθ θ=  but for 

simplicity we do not explicitly show the price dependencies. Proofs are given at the end of this Appendix. 

Lemma 1. Given pO  and pN, sales quantities qO and qN are as follows: 

a) If *
O Nθ θ θ≤ ≤ , then 1 0O O Oq pθ= = − ≥ , and ( ) / 0N N N Nq z r p kθ= − = − ≥ . 

b) If *
N Oθ θ θ≤ ≤ , then * 0Oq θ= ≥ , and * 0Nq z θ= − ≥ . 
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Figure A-1.  Example of outcomes when products O and N are sold by different firms 

Note in Figure A-1 that broad appeal is “good” – product N with broad appeal has an advantage in the 

sense that it can achieve a constrained monopoly “more easily” than product O.  (Compare in Figure A-1 

the intercept of the boundary to N’s constrained monopoly region on the x-axis, which occurs at 

( )1 2z k+ , to the intercept of the boundary of O’s constrained monopoly region on the y-axis, at 

( )2z k+ , and note that ( ) ( )1 2 2z k z k+ < + .)  The advantage of broad appeal is also illustrated by the 

way product N “reaches over” to encroach on product O earlier.  (Compare the intercept of the boundary 

to the detached monopolies region on the x-axis, at 2kz  with this boundary’s intercept on the y-axis, at  

2z  and note that 2 2kz z< .)  If similar plots were made for other values of z, we would find that as z 

increases, the two constrained monopoly regions would shrink (and eventually disappear), while the 
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detached monopolies region and the benign duopoly region would both grow toward the upper right, 

meaning the differentiated duopoly region would shrink.  

Theorem 1. When reservation price curves are opposite sloping and the two products are sold by 
different firms, the Nash equilibrium prices, quantities, and profits are as follows:  

 Detached Monopolies  Benign Duopoly  

Conditions 2 /O Nm z m k≤ − .
 

2 /O Nm z m k≥ −  and (2 ) (2 ) /(1 2 )O Nm z k m k k≤ + − + + . 

Prices 
2

N N
N

r cp +
=  and  

1
2

O
O

cp +
= . 

There is a continuum of equilibria for which prices are:
 

( )1N N Op r k z k p= − + −  and ( )1 /O N Np z r p k= − + − , 
extending over the range:

 
,

2 2
N N O

N N
r c mp r kz k+⎡ ⎤∈ − +⎢ ⎥⎣ ⎦

 and 
1 ,1

2 2
O N

O
c mp z

k
+⎡ ⎤∈ − +⎢ ⎥⎣ ⎦

.
 

Quantities 
2

N
N

mq
k

= and 
2

O
O

mq = . 
1

1
O N N

N
p p r k zq z

k
− + − +

= −
+

 and  
1

1
O N N

O
p p r k zq

k
− + − +

=
+

.
 

Profits ( )2 4N Nm kπ = and  
2 4O Omπ = . 

  
( )N N N Np c qπ = − and ( )O O O Op c qπ = −

 
.
 

 

 
Differentiated Duopoly

 
Constrained Monopoly for N Constrained Monopoly for O 

Conditions ( )1 2O Nm m z k≥ − +  and 

( )2O Nm m z k≤ + +  and  
2(2 )

1 2O N
km z k m
k

+
≤ + −

+
.
 

 
2 /O Nm z m k≥ −  and 

( )1 2O Nm m z k≤ − + .
 

 
2 /O Nm z m k≥ −  and 

( )2O Nm m z k≥ + + . 

Prices ( )2 2
3
N N O

N

z k r c m
p

+ + + −
=  

and 
( )1 2 1 2

3
O N

O

z k c m
p

+ + + −
= .

 

N N Op r k z m= − −  and  

O Op c= . 

N Np c=  and 

1O Np z m= − − . 

Quantities ( )
( )

2
3 1

O N
N

z k m m
q

k
+ − +

=
+

and 

( )
( )

1 2
3 1

O N
O

z k m m
q

k
+ + −

=
+

. 

 
Nq z=  and  

0Oq = . 
 

 
0Nq =  and 

Oq z= . 
 

Profits ( )
( )

2
2

9 1
N O

N

m z k m
k

π
+ + −⎡ ⎤⎣ ⎦=

+
 

and 

( )
( )

2
1 2

9 1
O N

O

m m z k
k

π
− + +⎡ ⎤⎣ ⎦=

+
.
 

 
( )N N Om m k z zπ = − −  and 

0Oπ = . 
 

 
0Nπ =  and 

( )O O Nm m z zπ = − − . 
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Theorem 2. When the reservation price curves are opposite sloping and the two products are sold by 
the same firm, the monopolist’s profit maximizing prices, quantities, and profits are as follows:  

 Monopoly for O Monopoly for N 

Conditions 2 /O Nm z m k≥ −  and  
2O Nm m z≥ + .

 

2 /O Nm z m k≥ −  and 2O Nm m kz≤ −
 
.
 

Prices N Np r≥  and 1Op z= − . N Np r k z= −  and 1Op ≥ .
 Quantities 0Nq =  and Oq z= . Nq z=  and 0Oq = .

 Profits ( )N O Om z zπ π π= + = − .
 

( ) N O Nm k z zπ π π= + = − .
 

 

 Joint Detached Monopoly Joint Covered Monopoly 

Conditions 2 /O Nm z m k≤ − .
 

2 /O Nm z m k≥ −  and 2O Nm m kz≥ −
 
and

 
2O Nm m z≤ + .

 
Prices 

2
N N

N
r cp +

=  and  

1
2

O
O

cp +
= . 

( )
( )

2 2
2 1

O N N
N

k m k r k c k z
p

k
+ + + −

=
+

 and 

( )
( )

2 1 1
2 1

O N
O

k z c m
p

k
− + + +

=
+

 .
 

Quantities 
2

N
N

mq
k

= and 
2

O
O

mq = . 
( )

2
2 1

O N
N

m m k zq z
k

− +
= −

+
 and  

( )
2

2 1
O N

O
m m k zq

k
− +

=
+

.
 

Profits 2 2

4 4
N O

N O
m m

k
π π π= + = + . ( ) ( )

( )

2 24  4  

4 1
N O O N

N O

m m k m m k z

k
π π π

− + + −
= + =

+
.
 

A picture showing the various market regions for Theorem 2 would be similar to Figure A-1 in that 

the joint detached monopoly region matches that of the detached monopolies.  Further, the joint covered 

monopoly region is similar to the differentiated duopoly region in Theorem 1, and the one-product 

monopoly regions are similar to the one-product constrained monopoly regions in Theorem 1 except that 

the joint covered monopoly region abuts the joint detached monopoly region (there is nothing equivalent 

to the benign duopoly) and the boundaries between the joint covered monopoly region and one-product 

monopoly regions are parallel to the boundaries between the differentiated duopoly and the one-product 

constrained monopoly regions, but the x and y-axis intercepts are at 2 k z and 2 z, respectively. 
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Proof of Lemma 1:  A customer of type  { }*0, , ,O Nθ θ θ θ∈  is allowed to buy both products, or both 

buy a product and buy nothing, since such a customer represents an infinitesimal purchase rate. Define 

( )iψ θ  as the surplus for product i obtained by consumer type θ ; in other words, the reservation price for 

product i held by consumer type θ  minus the price for product i. 

If O Nθ θ≤ , then *
O Nθ θ θ≤ ≤ : this follows directly given 1O Opθ = − , Nθ =  

( )N Np r k z k− + , and ( ) ( )* 1 / 1O N Np p r k z kθ = − + − + + . Similarly, if N Oθ θ≤ , then 
*

N Oθ θ θ≤ ≤ .  Thus *
O Nθ θ θ≤ ≤  or *

N Oθ θ θ≤ ≤  (both sets of inequalities apply if O Nθ θ= :  in this 

case *
O Nθ θ θ= = ).  We show the proof for part b) of Lemma 1.  The proof for a) follows similarly. 

b) Given N Oθ θ≤ .  If [ ]0, Nθ θ∈ , then surplus ( ) 1O Opψ θ θ= − −  0O O Nθ θ θ θ= − ≥ − ≥ , 

and ( )  N N Nv k pψ θ θ= + − = ( )Nk θ θ−  0≤ .  Because ( ) ( )O Nψ θ ψ θ≥ , the customer buys product 

O.  If *,Nθ θ θ⎡ ⎤∈ ⎣ ⎦ , then ( )Oψ θ = Oθ θ− * 0Oθ θ≥ − ≥  and ( ) ( ) ( ) 0.N N N Nk kψ θ θ θ θ θ= − ≥ − =   

Thus ( ) ( )O Nψ θ ψ θ− = Oθ θ− ( )Nk θ θ− − ( ) *1 0O Nk kθ θ θ≥ + − + ≥ , and the customer buys product 

O. If *, Oθ θ θ⎡ ⎤∈ ⎣ ⎦ , ( )Oψ θ = 0O O Oθ θ θ θ− ≥ − =  and ( )Nψ θ = ( ) ( ) 0.N N Nk kθ θ θ θ− ≥ − =   Thus 

( ) ( )N Oψ θ ψ θ− ( ) *1k θ≥ + 0N Okθ θ− − = , and the customer buys product N.  If [ ],O zθ θ∈ , then 

( ) 0Oψ θ ≤ , and ( ) 0Nψ θ ≥ , and the customer buys product N. 

Proof of Theorem 1:  We refer to the firms selling products O and N as firms O and N, respectively, and 

find below five possible equilibria.   

Equilibrium 1:  Detached Monopolies 

If O Nθ θ≤ , then by Lemma 1a), 1O O Oq pθ= = − , and N Nq z θ= − ( )N Nz p r kz k= − − −⎡ ⎤⎣ ⎦  and both 

firms sell strictly positive quantities.  Given the other firm’s price, Firm O’s and Firm N’s optimization 

problems are, respectively: 

Max 
 pO 

( ) ( )( )1O O O O O O Op c q p c pπ = − = − − . 

Max 
 pN 

( ) ( )( )( )N N N N N N N Np c q p c z p r kz kπ = − = − − − + . 

The objective functions are strictly concave such that the solutions are globally optimal for each firm.  

The solutions are: 
21 ,  ,  and ,

2 2 4
O O O

O O O
c m mp q π+

= = =  while 
2

,  ,  and .
2 2 4

N N N N
N N N

r c m mp q
k k

π+
= = =  

Since these solutions are valid if O Nθ θ≤ , or 1 ( )O N Np p r kz k− ≤ − + , the above solutions hold if 



 5

2O Nm z m k≤ − .  The market is not covered, except at the boundary 2O Nm z m k= − . 

Equilibria 2-5 (The potential market is covered.) 

If O Nθ θ≥ , then by Lemma 1b), both firms sell weakly positive quantities, and the quantities sold by 

each firm are given in Lemma 1b).  Given Firm N’s price, Firm O’s optimization problem is: 

Max 
 pO 

( ) ( ) *
O O O O O Op c q p cπ θ= − = −  

subject to: * 0θ ≥ , ( )1 0O N Np r k z p⇒ − − − + ≥ :  Nonnegative quantity of Product O. 
* zθ ≤ , ( ) ( ) ( )( )1 1 0O N Nz k p p r k z⇒ + − − − − − ≥ :  Nonnegative quantity of Product N. 

O Nθ θ≥ ,  ( ) ( )1 0O N Nk p r k z p⇒ − + − − ≥ :  Surplus must be 0≥  at *θ . 

The objective function is strictly concave: ( )2 2 2 1 0O Op kπ∂ ∂ = − + < . The second partial derivatives 

of the constraint functions are equal to zero: The constraint functions are also concave.  Therefore any 

solution meeting the KKT conditions is globally optimal. 

Let Oλ  and Nλ  denote the Lagrange multipliers associated with the non-negativity constraints 

for Product O and Product N, respectively, and let Sλ  denote the Lagrange multiplier associated with the 

third (surplus) constraint.  The Lagrangian becomes: 

( ) ( )( ) ( ) ( )( )
( ) ( ) ( )( )( ) ( ) ( )( )

1 1 1

1 1 1 .

O O O N N O O N N

N O N N S O N N

p c p p r kz k p r kz p

z k p p r kz k p r kz p

λ

λ λ

− − + − − + − − − − +

− + − − − − − − − + − −
 

The KKT conditions are as follows, stemming from the first order conditions with respect to pO, the 

orthogonality conditions, and the non-negativity conditions for the Lagrange multipliers. 

( )
1 ( ) 2 0

1
N N O O

O N S
r kz p c p k

k
λ λ λ− − + + −

+ − + =
+

, 
(1)

( )( )1 0O N O Op r kz pλ− − − − + = , (2)

( ) ( ) ( )( )( )1 1 0N O N Nz k p p r kzλ− + − − − − − = , (3)

( ) ( )( )1 0S O N Nk p r kz pλ− − + − − = , (4)

0Oλ ≥ ,  (5)

0Nλ ≥ , (6)

and 0Sλ ≥ . (7)
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Similarly, the optimization problem for the firm selling product N is: 

Max 
pN 

( ) ( )( )

( ) ( ) ( )
( )

*

1 ( )
.

1

N N N N N N

O N N
N N

p c q p c z

p p r kz
p c z

k

π θ= − = − −

⎛ ⎞− + − −
⎜ ⎟= − −
⎜ ⎟+⎝ ⎠

 

 

subject to: * 0θ ≥ , 1 ( ) 0O N Np r kz p⇒ − − − + ≥ :  Nonnegative quantity of Product O. 
* zθ ≤ , ( ) ( ) ( )1 1 ( ) 0O N Nz k p p r kz⇒ + − − − − − ≥ :  Nonnegative quantity of Product N. 

O Nθ θ≥ , ( )1 ( ) 0O N Nk p r kz p⇒ − + − − ≥ :  Surplus must be 0≥  at *θ . 

The second derivative of the objective function is:  ( )2 2 2 1 0N Np kπ∂ ∂ = − + < .  Thus the objective 

function is concave.  The second partial derivatives of the constraint functions equal zero:  The constraint 

functions are also concave.  Therefore any solution meeting the KKT conditions is globally optimal. 

Let Oλ  and Nλ  denote the Lagrange multipliers associated with the non-negativity constraints 

for Product O and Product N, respectively, and let Sλ  denote the Lagrange multiplier associated with the 

surplus constraint.  The Lagrangian becomes: 

( ) ( ) ( )
( ) ( )

( )( ) ( )( )

1 ( )
1 ( )

1

1 (1 ) ( ( )) 1 ( ) .

O N N
N N O O N N

N O N N S O N N

p p r kz
p c z p r kz p

k

z k p p r kz k p r kz p

λ

λ λ

⎛ ⎞− + − −
⎜ ⎟− − − − − − +
⎜ ⎟+⎝ ⎠

− + − − − − − − − + − −

 

The KKT conditions are as follows, stemming from the first order conditions with respect to pN, the 

orthogonality conditions, and the non-negativity conditions for the Lagrange multipliers. 

( )
1 ( ) 2 0

1
O N N N

O N S
p r kz p cz

k
λ λ λ− − − + −

− − + + =
+

, 
(8)

( )( )1 0O O N Np r kz pλ− − − − + = , (9)

( ) ( ) ( )( )( )1 1 0N O N Nz k p p r kzλ− + − − − − − = , (10)

( ) ( )( )1 0S O N Nk p r kz pλ− − + − − = , (11)

0Oλ ≥ , (12)

0Nλ ≥ , (13)

and 0Sλ ≥ . (14)
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As indicated, for each firm there are three constraints (and three associated Lagrange multipliers).  This 

yields eight possible combinations of binding and non-binding constraints, but at most one constraint can 

be binding:  if both non-negativity constraints were binding then both firms would realize zero sales, in 

which case O Nθ θ≤  which violates the condition O Nθ θ≥ , while if a non-negativity constraint and the 

constraint for positive surplus were both binding this would imply that one firm realizes zero sales but 

also prices at the maximum reservation price (this could not be an equilibrium because the firm would 

always be willing to reduce its price down toward cost in an attempt to gain sales, and cost is assumed to 

be less than the maximum reservation price). This leaves four viable solutions, one involving no binding 

constraints and the other three involving the three respective individual constraints. The values of mO and 

mN establish the regions in which each solution applies, as identified below. 

Equilibrium 2: Both Firms Sell Strictly Positive Quantities in a Differentiated Duopoly 

When none of the three constraints are binding ( 0O N Sλ λ λ= = = ), the first order conditions give Firm 

O’s and Firm N’s reaction functions (for emphasis we list below each price as a function of the other 

price, but omit these dependencies elsewhere for brevity): 
Firm O:  ( ) ( )( )1 / 2O N O N Np p c p r kz= + + − −  (15)

Firm N: ( ) ( )1 / 2N O O N Np p p r c z= + + + −  (16)

Simultaneously solving (15) and (16) for prices yields: ( )1 2 1 2 3O O Np z k c m⎡ ⎤= + + + −⎣ ⎦  and 

( )2 2 3N N N Op z k r c m⎡ ⎤= + + + −⎣ ⎦ . Substituting these into the equations for quantities and profits 

yields the expressions in Theorem 1 for the differentiated duopoly.  The condition * 0θ ≥  is satisfied if 

and only if ( )1 2O Nm m z k≥ − + , while * zθ ≤  is satisfied if and only if ( )2O Nm m z k≤ + +  and 

O Nθ θ≥  is satisfied if and only if ( ) ( ) ( )2 / 1 2 2O Nm k m k z k≥ − + + + + .  (These are found by 

substituting the optimal prices into the constraint functions.)  When these conditions are satisfied, the 

reaction functions ( )N Op p  and ( )O Np p  yield a dynamically stable tâtonnement process and a unique 

equilibrium.  See Fudenberg and Tirole (1995), p. 24. 

Equilibrium 3: Only Firm O Sells a Strictly Positive Quantity in a Constrained Monopoly 

A solution when only the second constraint is binding, 0Nλ ≥  and 0O Sλ λ= = , implies Firm N gets no 

sales and therefore no profits, 0 and 0,N Nq π= =  also indicating Firm N prices at cost, N Np c=  

(similar to the Bertrand result of price competition, if Firm N priced above cost and sold nothing, Firm N 

would always be willing to reduce price to achieve positive sales).  From the KKT conditions and 
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constraints, we find this solution is an equilibrium if and only if ( )2O Nm m z k≥ + +  

and 2O Nm z m k≥ − , yielding 1O Np z m= − − ,  Oq z= , and  ( )O O Nm m z zπ = − − . 

Equilibrium 4: Only Firm N Sells a Strictly Positive Quantity in a Constrained Monopoly 

A solution when only the first constraint is binding, 0Oλ ≥  and 0N Sλ λ= = , implies Firm O gets no 

sales and therefore no profits, 0 and 0,O Oq π= =  also indicating Firm O prices at cost, O Op c= .  From 

the KKT conditions and constraints, we find this solution is an equilibrium if and only if 

( )1 2O Nm m z k≤ − +  and 2O Nm z m k≥ − , yielding N N Op r kz m= − − , Nq z= , and 

( )N N Om m kz zπ = − − . 

Equilibrium 5: Both Firms Sell Strictly Positive Quantities in a Benign Duopoly 

A solution when only the third constraint is binding, 0Sλ ≥  and 0O Nλ λ= = , applies if 

2O Nm z m k≥ −  and ( ) ( ) ( )2 2 1 2O Nm z k k m k≤ + − + + , per the KKT conditions and constraints.  

The surpluses equal zero at *θ . The reaction functions are found from (4) and (11): 

( ) ( )1N O O Np p k p r kz= − + −  and ( ) 1O N N Np p z r p k⎡ ⎤= − + −⎣ ⎦ , indicating the response functions 

are coincident and there are an infinite number of equilibria.  Given these reaction functions and the KKT 

conditions and constraints, we find: 
 N N Nr k z p r− ≤ ≤ :  As determined by substituting ( )O Np p  into the conditions *0 zθ≤ ≤ .  

1 1Oz p− ≤ ≤ :  As determined by substituting ( )N Op p  into the conditions *0 zθ≤ ≤ . 

These five cases have partitioned all possible values of and O Nm m . 
 

Proof of Theorem 2: The proof is similar to that of Theorem 1, but in this case the single firm maximizes 

its sum of profits from Products O and N.  
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APPENDIX B: Mapping of Disruptive Innovation to Low-end Encroachment, and 

Sustaining Innovation to High-end Encroachment  

This appendix shows disruptive innovation maps to low-end encroachment, and sustaining innovation 

maps to high-end encroachment.  To do so we use the trajectory charts that Christensen (1997), 

Christensen and Raynor (2003), and Christensen et al. (2004) (abbreviated C, CR, and CAR, respectively) 

state form the basis for the theory of disruptive innovation.  A trajectory chart for the disk drive industry 

is shown in C (p. 16), while similar charts are presented in CR (pp. 33 and 44), CAR (p. xvi) and Bower 

and Christensen (1995). A summary list of abbreviations used is shown in Table B-1 below. 

Table B-1. Abbreviation of References (in the order first used) 

C Christensen (1997) 
CR Christensen and Raynor (2003) 
CAR Christensen et al. (2004) 

The Mapping of Disruptive Innovation to Low-end Encroachment  

The charts in CR/CAR are three-dimensional (3-D) in an attempt to show more information, but in turn 

they lose some of the richness of the original 2-D disk drive chart in C.  To show both the richness of the 

original chart as well as the additional information conveyed in the 3-D charts, we develop the two frames 

shown in Figure B-1.  (In their 3-D graphs they only show information at two points along the third 

dimension, so we can effectively show the same information with just two 2-D frames.)  We add some 

further richness to the charts, which will be justified below when that information is needed. 
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Figure B-1. Disruptive innovation theory (adapted from C, p. 16 and CAR p. xvi) 

Disruptive innovation theory is described by C/CR/CAR assuming two performance dimensions.  The 

left frame in Figure B-1 applies to the first dimension, the one most highly valued by current high-end 
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customers, while the right frame applies to the second dimension, the one highly valued by a new market 

– that is, if there is a new market.  CR distinguish between new-market disruptions which first open up a 

new market before encroaching on the old market, and low-end disruptions which are simply lower-

priced products.  In other words, for CR’s low-end disruption scenario, the right-hand frame does not 

apply because there is no new market.   

Each graph shows consumer demand1 and product performance in relation to the given attribute.  As 

illustrated in the left frame, low-end customers have lower demands for the first attribute than high-end 

customers.  It is assumed users will buy a product only if it meets the user’s demand along every 

dimension, but users will not pay extra for an overshoot in performance (i.e., they will buy the product 

that meets their demand by the smallest margin, with the least overshoot).2  As illustrated in the left 

frame, the performance of the old product along this dimension meets the demand of both high-end and 

low-end consumers at time t0.  In contrast, the new product (the disruptive innovation) falls short of the 

low-end users’ demand until time t2, and falls short of the high-end customers’ demand until time t3 (we 

will address the demand curve for the new market shortly).  

Consider the scenario CR and CAR call new-market disruption.  Given our description above, this 

means the new market’s demand curve for the first performance dimension must lie below that of the 

low-end market, as shown in the left frame of Figure B-1 (if it were positioned above the low-end market, 

then low-end users would buy the new product before the new-market users).3  Now consider the right-

hand frame in Figure B-1.  CR show two demand curves for the second dimension – we interpret these to 

be the average demands for the old market and for the new market.  Specifically, we interpret the lower 

curve to apply to the old market and the upper curve to the new market, such that the new market has a 

higher demand than the old market with regard to the second performance dimension.  (Christensen 

(1992) shows that when a new smaller disk drive was introduced, it appealed to a new market which 

highly valued the new smaller size but placed lesser value on storage capacity, whereas the old market 
                                                 
1 CR use the term “demand” to denote the performance level usable by the customer, without directly 

addressing the trade-off a customer generally makes between performance and price.  We formalize this 
trade-off in our linear reservation price model. 

2 This is not spelled out explicitly in C/CR/CAR, but it is implicit since the “demand curves” as developed in 
Christensen (1992) are simply the median disk drive capacities actually purchased by the various market 
segments.  (For example, the high-end market is the mainframe segment.) 

3 Technically, we should also consider the demands for the second performance dimension before drawing 
this conclusion – if we do so using the right-hand frame in Figure B-1, this statement still holds. 
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didn’t place as much value on compactness.  In other words, demands for the two performance 

dimensions were negatively correlated – the high end of the old market strongly demanded capacity but 

weakly demanded compactness, the low end of the old market less strongly demanded capacity and more 

strongly demanded compactness, while the new market least strongly demanded capacity and most 

strongly demanded compactness.)  In the right frame of Figure B-1 we have drawn the demand curves in 

the relative positions suggested by these observations.4   

Given these curves, the purchase decisions are as follows.  Up to time t2 the low-end and high-end 

users buy the old product (it exceeds both performance demands while the new product fails to meet 

demands for performance dimension 1).  Up to time t1 the new-market users buy nothing (neither product 

meets their performance demands for dimensions 1 or 2) while beyond time t1 they buy the new product 

(it meets both demands with the least overshoot).  The low-end users switch to the new product at time t2 

and the high-end users switch at time t3.  (Although both products meet their performance demands, the 

new product has less overshoot.)5  Accordingly, we have shown that what C/CR/CAR call new-market 

disruption leads to low-end encroachment:  the product first opens up a new market and then encroaches 

on the low-end market before diffusing up-market to the high end.  In Schmidt and Porteus (2000) we 

illustrate how the new market can be on the low-end fringe of the old market (illustrating the “fringe-

market” type) while in Druehl and Schmidt (2008) we formulate the “detached-market” type.  That is, we 

have just shown that new-market disruption maps to low-end encroachment, which we further distinguish 

as being of either the fringe-market or detached-market type.  

Our contention that disruption results in low-end encroachment has been derived above using the 

trajectory curves of C/CR/CAR.  Since these trajectory curves form the basis of their theory of disruptive 

innovation, we conclude that C/CR/CAR effectively define disruptive innovation to be a low-end 

encroachment process, not a high-end one.  The model presented in Druehl and Schmidt (2008), along 

with those in Schmidt and Porteus (2000) and in Schmidt and Druehl (2005), also support this notion. 

                                                 
4 The only possibility is that the “demand curve” for the users of the old product (i.e., the old market 

demand) lies below the performance curve for the old product (at least during the time period over which 
they buy the old product, or else they would not buy it).  Similarly, the only possibility is that that the 
performance trajectory for the new product lies above the old market demand curve after the time at which 
the old market has switched to buying the new product.   

5 The trajectory for the new product in shown to start at t0 but since no one buys until t1 in this case we 
interpret this to mean the product is effectively introduced at time t1. 
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To complete our mapping, we next address Christensen’s categorizations of low-end disruption and 

sustaining innovation. Low-end disruption can be described as follows (since there is no new market in 

this case, we ignore the right frame in Figure B-1 and the new-market demand curve in the left frame).  At 

time t0 both the low-end and high-end users buy the old product, as the new product falls short of their 

demand.  At time t2 the low-end users switch to the new product as it catches up with their demand, and at 

time t3 the high-end users switch.  We have just described what we call low-end encroachment – the new 

product first sells to the low end and then diffuses upward to the high end.  We call this the immediate 

form of low-end encroachment because there is no new market – the encroachment on the old market is 

immediate.  CR use the example of discount retailers encroaching on high-end retailers.  The analysis of 

Schmidt and Porteus (2000) also applies to the immediate form. 

Mapping of Sustaining Innovation to High-end Encroachment  

Next we discuss the diffusion pattern for a sustaining innovation.  CAR’s discussion of “undershot 

customers” suggests that sustaining innovations are repeatedly successful when customer demands are 

rapidly increasing relative to the rate of advancement in any given innovation.  We use the familiar 

example of subsequent generations of Pentium microprocessors to illustrate this phenomenon.  In the 

1990s Intel would introduce a new generation of Pentium processor, and before long, because of further 

software upgrades by Microsoft, customers would be clamoring for more processing power (to date, the 

market for a new generation of MP3 player relative to the previous generation also fits this description, in 

that customers flock to a new model that stores more songs).  We interpret this type of situation to mean 

that the users’ demand curve is steep relative to the product’s performance curve, as shown in Figure B-2.  

We again provide more detail in this trajectory chart than do C/CR/CAR, by inferring added detail from 

CAR’s discussion of “undershot customers”.6   

                                                 
6 We interpret the trajectory chart on p. xvi in C as follows.  After a disruptive innovation is introduced, such 

as a smaller disk drive, it is immediately and continually upgraded with an infinite number of infinitesimal 
sustaining innovations.  This is what gives it the upward performance trajectory along the first performance 
dimension – this upward trajectory can only be achieved by sustaining innovations.  This is why C’s 
performance curve for the disruptive innovation is labeled “progress due to sustaining innovations.”  With 
regard to a sustaining innovation, there does not seem to be formal recognition of a discrete sustaining 
innovation (such as a new generation of microprocessor).  Similar to what happens to a disruptive 
innovation after its introduction, the “non-disruptive” product (to which the trajectory chart on the left in C, 
p. xvi applies) simply undergoes an infinite number of infinitesimal sustaining innovations over time (the 
left trajectory is similarly labeled “progress due to sustaining innovations”).  See also the trajectory chart on 
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Figure B-2. Trajectory chart for a sustaining innovation 

As suggested by Figure B-2, from time t0 to t1 both low-end and high-end users buy the old product, 

as it meets their demands with the least amount of overshoot.  At time t1 the high-end market switches to 

the new product as the old product no longer meets their needs (this implies the new product isn’t 

introduced in the market until time t1), while the low-end market does not switch to the new product until 

time t2, at which point the high-end market moves on to an even newer product (another sustaining 

innovation, introduced, technically, at time t2).  Thus we infer sustaining innovation leads to high-end 

encroachment, where the new product diffuses downward from the high end of the existing market.  

Going back to the microprocessor example, a new generation of Pentium offers more of what current 

high-end customers want, processing power.  It starts out high priced, selling first to high-end customers, 

diffusing downward. 
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APPENDIX C: Development of Opposite-Sloping Reservation Price Curves for Cell Phones 

In this appendix we develop hypothetical part-worth curves for cell phones, to illustrate how they might 

result in opposite-sloping reservation price curves.  (The new and old products are monthly cell-phone 

and land-line subscriptions, respectively.)  At their introduction around twenty years ago, denoted by time 

t0, cell phones were quite expensive and very bulky.  Furthermore, reception was so poor that early users 

frequently lost contact with the party to whom they were speaking.  But poor performance along this 

traditional dimension of quality (reception) was overlooked by early users because they more highly 

valued performance along an alternate dimension, which we call portability.  In addition, phones can be 

thought of as conferring social status on the user.  For example, in 1985, teens might have envied a peer 

who had her own individual land line.  Similarly, an early cell-phone user might have purchased that 

phone in part because it called attention to her when the phone rang in public.  

We assume reception, portability and status are the only features of significance for phones (cell or 

land line).  Thus the number of attributes, denoted by n, is n = 3.  We posit that various customers held 

(and continue to hold) vastly different willingness-to-pay for these attributes.  For example, Rogers 

(2003) suggests early cell-phone users were business executives such as building contractors who highly 

valued phone portability in going from job to job.  Such a user really represented multiple customers, 

because she still relied on a land line for basic service, with a uniquely different willingness-to-pay for a 

land line as compared to a cell phone.   

We assume z  consists of w distinct customer segments of size { },  1,...,z wα α ∈ ; for phones we 

assume w = 2, representing the stationary (α = 1) and mobile (α = 2) segments.  Stationary customers use 

a phone in a relatively fixed location, such as in an office or a home.  Mobile customers need a phone 

while on the go.  Since from Figure 3 of Druehl and Schmidt (2008) we see that cell phones seem to 

encroach on the land-line market before their sales equal the sales of land lines, we assume 

1z = 22 2 / 3z z= . 

Starting with segment 1 and attribute 1, we order the customers from highest to lowest part worth, 

and assume the resulting part-worth curve is continuous and linear.  This effectively identifies each 

customer’s “type,” denoted by [ ]1 10,  zθ ∈ .  Using this same ordering of customers within segment 1, we 

plot the part-worth curves for all other attributes and assume all part-worth curves are linear.  We then 

proceed to each subsequent segment and again order customers from highest to lowest willingness-to-pay 
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for some given attribute, such that customer type in segment α, { }2,..., wα ∈ , is denoted by 
1

1 1

, z z
α α

α α αθ
−⎡ ⎤∈ ⎢ ⎥⎣ ⎦

∑ ∑ .  Again, we assume the plot is continuous and linear, and assume the plots of the 

part-worth curves for all other attributes are linear within each customer segment. 

For cell phones, [ ]1 0, 2 3zθ ∈  and [ ]2 2 3,  z zθ ∈  denote stationary and mobile customers, 

respectively.  We divide each segment into three sub-segments called business, individual, and teen.  First 

consider the stationary customer segment.  We assume that customers in the stationary business sub-

segment are contemplating the purchase of an office (business) phone, stationary individual customers are 

considering a primary line for their homes, and teen customers are considering a second line for the home 

(other uses for a second line, such as for Internet access, will also fall under this sub-segment).  First 

consider the attribute of reception.  We assume business users have the highest part worths, followed by 

individuals, followed by teens.  The logic is that an office user typically expects and demands a “perfect” 

connection.  An individual home user expects this as well but is a bit more price sensitive.  And a home 

user is typically willing to pay more for the first line than the second line, such that the part worth for the 

teen user (i.e., for the second home line) is lowest.  These assumptions yield reception part-worth curves 

for stationary customers as shown in the left portion of Figure C-1.  Customers are ordered from highest 

to lowest in terms of part worth for the reception attribute at time 0t , the time of introduction of the cell 

phone (roughly 1985).  As suggested by the x-axis, business customers are of lowest type 1θ  followed by 

individuals followed by teens.  We assume that z  = 3,750,000 at 0t  and plot the part worths for land 

lines and cell phones. 

We denote the slope of the part-worth curve for a particular time by ,
j

ik α  and the intercept by ,
j

iv α , 

where { },j O N∈  denotes the product (the two products are identified as products O and N, where O is 

for old product and N is for new product, { }1,...,i n∈  the attribute, and { }1,..., wα ∈  the segment.  Thus 

the part-worth (i.e., utility) curve is ( ),
j

iu α αθ  = , ,
j j

i iv kα α αθ+ .  We label reception as attribute 1, the land 

line as product O, and the cell phone as product N.  We assume the land-line part-worth curve for 

reception for stationary customers in 1985 is ( )1,1 1
Ou θ  = 1,1 1,1 1

O Ov k θ+  = 1450 0.00013 .θ−   (Note that 

these numbers represent hypothetical but plausible part worths.)  All these customers consider the 

reception offered by a land line in 1985 to be worth more than that offered by a 1985 cell phone (product 

N).  Hence, we assume ( )1,1 1
Nu θ 153 0.0000015θ= − .   
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Figure C-1.  Hypothetical part-worth curves for the phone example, circa 1985 

Our framework thus accommodates the existence of multiple sub-segments assuming linear variation 

in willingness-to-pay within a sub-segment and that the sub-segments touch.  For example, the “first” 

stationary teen customer is virtually identical to the “last” stationary individual customer.  

Maintaining the same ordering of customers within the segment, we similarly plot the part-worth 

curves for all other attributes, and assume each part-worth curve is linear.  To illustrate with phones, next 

consider the part worths that stationary customers ascribe to the attribute of portability, attribute 2 (see the 

left portion of the middle frame of Figure C-1), assuming the same ordering of customers as for reception.  

This attribute is not nearly as highly valued by stationary customers as reception, but part worths for 

business users are still higher than those of teen users because of the need for productivity, for example.  

We assume that for a land line the y-intercept is 2,1 22Ov =  and the slope is 2,1 0.000001Ok = − .  A cell 
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phone clearly performs better than a land line along this dimension (a land line is portable only to the 

extent of the length of the phone cord, or the range of the base station), such that all customers hold a 

higher part worth for the cell phone.  We therefore assume that ( )2,1 1 143 0.0000012Nu θ θ= − . 

With regard to the part worth for status (the left side of the bottom frame in Figure C-1), we assume 

business customers are “all business” and accordingly do not place much value on this attribute, while 

individuals are more status conscious and teens are highly status conscious.  Clearly, this is an 

oversimplification, but we proceed under this approximation.  We assume the part worths are: 

( )3,1 1 145 0.00005Ou θ θ= +  and ( )3,1 1 166.5 0.0000754Nu θ θ= + .   

The mobile customer segment is illustrated in the right portion of Figure C-1.  Without loss of 

generality, first order customers in terms of willingness-to-pay for the attribute of status.  We again 

(simplistically) assume business customers are “all business” and teens are most swayed by status.  We 

assume ( )3,2 2
Ou θ 2170 0.0001θ= −  and ( )3,2 2

Nu θ 2255 0.0001424θ= − , suggesting all customers 

attribute higher status to a cell phone.  With regard to the attribute of reception, mobile customers were 

probably not so concerned with reception back in 1985, as shown in the right side of the top frame, but 

everyone would have rated a land line more favorably along this dimension than a cell phone, with 

mobile business customers willing to pay more than teens (and individuals in between).  Thus we assume 

( )1,2 2
Ou θ  2125 0.000008θ= +  and ( )1,2 2

Nu θ  260.4 0.000009θ= + .  However, as shown in the right 

portion of the middle frame, mobile customers highly value portability, and a cell phone’s portability is 

much superior to that of a land line.  Thus the slope of the cell-phone part worth is greater; we assume 

( )2,2 2 219.5 0.000011Ou θ θ= +  and ( )2,2 2
Nu θ  240 0.0002061θ= + .   

Note that as is the case with a disruptive innovation, phone customers are assumed to have differed 

significantly with regard to the value they placed on individual product attributes.  Stationary customers 

highly valued reception, while mobile customers highly valued portability.  The new (disruptive) cell 

phone was weak on the first dimension, but strong on the second.   

To obtain the reservation price curves for each customer segment, we sum the part worths within that 

segment. Define , 
1

:
n

j j
i

i

k kα α
=

= ∑  and , 
1

: ,
n

j j
i

i

v vα α
=

= ∑  such that ( ) :juα αθ = ( ), 
1

n
j

i
i

u α αθ
=
∑ = jvα +  jkα αθ  denotes 

the customer’s reservation price for product j within segment α.  Thus for our phone example, ( )1 1
Ou θ  

1517 0.000081θ= −  and ( )2 2
Ou θ = 2315 0.000081 θ− , such that 1 2 :O O

Ok k k= = = 0.000081.−   

Generalizing, our model assumes that for each product, the sums of the slopes of the part-worth curves 
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are equal across all customer segments.  (If for any given segment the sum of the slopes jkα  is of opposite 

sign as compared to a different segment, reverse the order of customers within that segment.)  We denote 

this sum by jk  for { },j O N∈ .   

We further assume there is an ordering of customer segments such that 
1

ju z
α

α α
⎛ ⎞
⎜ ⎟
⎝ ⎠
∑  = 1

1

ju z
α

α α+
⎛ ⎞
⎜ ⎟
⎝ ⎠
∑  

for { }1,  ..., 1wα ∈ − .  Effectively, we assume the reservation price curves for the individual segments 

can be pieced together to form a linear reservation price curve for the product.  (The segments may need 

to be reordered to achieve this.)  Thus a customer of type αθ  can simply be referred to as being of type 

θ , where [ ]0,  zθ ∈ , effectively yielding a uniform distribution of customer types over the interval 

[ ]0,  z .  (Technically, uniformity will not hold at 1z , 1 2z z+ , …, 1 1... wz z −+ + , but we ignore this as the 

effect is infinitesimal.)  The reservation price for a customer of type θ  is simply denoted by ( )ju θ  and 

the reservation price curve for product j can thus be described by ( )  j j ju v kθ θ= +  where jv  := ( )1 0ju  

= , 1
1

n
j

i
i

v
=
∑ .   

Using the most recently defined ordering of w customer segments and ordering of customers within 

each segment, the part worths for the other product J are plotted, { },  J O N∈  and .J j≠   Again it is 

assumed that the sums of the slopes are equal, :Jk =  , 1
1

n
J
i

i

k
=
∑ = … = , 

1

n
J
i w

i

k
=
∑ , but Jk  need not equal jk , 

and that the linear reservation price curves for the various segments can be pieced together to form a 

linear reservation price curve for the product.  Recall that without loss of generality jk  is negative; in 

Druehl and Schmidt (2008) we provide analytical results for the case where Jk  is positive.  

Given the above setup, product J’s reservation price curve can be described by ( )Ju θ =  

 J Jv kθ+  where Jv  := ( )1 0Ju  = , 1
1

n
J
i

i

v
=
∑ .  For phones, the stationary and mobile segments meet at 2 3z , 

where they are joined.  The resulting reservation price curve for land lines is ( ) 517 0.000081Ou θ θ= − , 

while for cell phones it is ( ) 162.5 0.0000727Nu θ θ= + .   

For ease of exposition we normalize the curves such that 1Ov = , 1Ok = − , and 0.5z = .  This results 

in the reservation price curves in Druehl and Schmidt (2008), ( ) 1Ou θ θ= −  and 

( ) 0.314 0.9 Nu θ θ= + . 
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