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Abstract

This document contains the derivations of the formulae and proofs for the paper by
Bradley and Guerrero (2008) that is entitled “Product Design for Life Cycle Mismatch.”
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1 Profit for Exponential Time to Part Obsolescence

To compute the expected, discounted profit under exponential times until part obsolescence,

we compute the profit for a deterministic time until obsolescence, which we use as a building

block for the subsequent stochastic analysis. Two cases must be computed, one in which

part obsolescence occurs before the end of the growth phase, 0 < 7 < T}, and one where

part obsolescence occurs in the decay phase, 7 > Tj.

1.1 Nondurable Design Profit for Deterministic Part Obsolescence

When part obsolescence occurs in the growth phase, 7 € (0,7,], the profit until part obso-

lescence at time 7, discounted back to time zero is
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For discounted profit after part obsolescence, t € [T, 00), we compute the following, with a

unit profit contribution of m — &
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We designate the sum of profit in these two results minus the fixed costs of the nondurable
product, which include the discounted cost of mitigating part obsolescence and the cost of
the initial design, as II% (7), where the subscript N denotes a nondurable design and the

superscript e denotes “early” obsolescence:
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When part obsolescence occurs in the decay phase, 7 € (T}, 00), the computation for
variable profit is made in three segments because the demand growth rate parameters change

at T, and because the unit profit contribution changes at 7:
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where the superscript ¢ denotes “late” obsolescence.

Computing the first segment, we find:
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Then, for the second segment, discounting profit back to time zero we find
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where the last line is due to the value Qr, = qoe’<Ts. Computing the third segment, we find
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Putting these three profit components together and subtracting the discounted cost of miti-

gating part obsolescence yields
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1.2 Nondurable Design Profit with Exponential Time to Part Ob-
solescence

The expression for profit under a nondurable design, Iy, is computed with the alternate
formula for Iy that is displayed in the main paper, using 11, (7) and II% (7) from (1) and

(2), and using an exponentially distributed time until part obsolescence with density function

f(7) = Xe ™
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The differential expected profit between a durable and nondurable design, A = I1p — 11,

is computed with (3) and IIp as shown in the accompanying paper:

_ (B — B) BTy (2 _ . e — b q0
ANT) = Gy gy (v men) + (e —ew)

. (66 — Be) C2 . Cl e(ﬁefrf)\)Tg
qol(ﬁg—r—»we—r—AJ(N v)

Mk —cy) @ ACo
+{<ﬁe—r—A><5e—r>}+<r+A>‘@"CN)' ©)

2 Proof of Theorem 1

Cumulatively, the following propositions describe the fundamental characteristics of the level

set L(A,T,) that are described in Theorem 1 of the accompanying paper. Specifically, they



describe the optimality regions for durable and nondurable designs when the time until part
obsolescence is distributed according to an exponentially distribution and the product has
high growth, 5, > r. In these propositions, we use T, ()) to denote the growth-phase
duration, T}, that minimizes A (\,7}), and thus maximizes the advantage of a nondurable

design relative to a durable design for a given “arrival rate” of part obsolescence \:
Tgmin (A) = arg rr%inA (N Ty).

Proposition 1. A unique, finite ;" ()) exists for every A € (0, 00).
Proof.

The derivative of IIp — Il w.r.t. T is
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which when evaluated at T, = 0,
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for remaining values of A. The expression in the braces of equation (6) is monotonic and
increasing. If \ < X, then the derivative at T, = 0 is initially negative and will eventually

become positive as T, — oo such that a zero derivative, and the minimum of IIp — Il will

exist at some T, > 0, namely, at the root of
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Proposition 2. The differential profit at Tgmin (A, A ()\,T;ﬁ“ ()\)), is increasing in A.
Moreover,

lim A (X, T3 (X)) >0,
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such that a durable design is optimal as A\ — oo (i.e., as Er — 0) when Cp — Cy <
q0(c% —cp)
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We first evaluate A (X, Ty) at T;"™ (X) for A small, that is A < X:
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We find that the derivative of this expression w.r.t. A (after tedious mathematics) is
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which is positive for 5, —r—X > 0 (A < 5, —r) and negative for 5, —r—A <0 (A > ., —r).

So, ¢ (A) attains its maximum w.r.t. A at A = 3, — r, which we evaluate to be

Consequently, the term within the braces in (7) attains a minimum at A\ = 5, — r of zero,
implying that the derivative of A (\,T},) w.r.t. A is always nonnegative.

Evaluating the limit of A (X, 7}) as A — 0o, we have
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Evaluating the exponent of the exponential function using I’'Hopital’s rule, we obtain
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Proposition 3. A unique, finite A exists such that T} min (\) = (), which we denote by ), if

Cp—Cy< M + Co A durable design is optimal for all T, for A > \.



Proof. The proof follows immediately from Proposition 2. B

Proposition 4. For 5, —r > 0, a durable design dominates a nondurable design as the

growth-phase duration grows large, i.e.,

lim A (X T,) > 0.

Tgﬂoo
Proof.

The value of equation (5) is dominated by the terms in 7, as T, grows large. If A > 5, —7,

then the dominant term of (5) is

T ),

which is positive and goes to infinity as 7, — oo. If A < 8, — r, then the value of (5) is

dominated by two terms,
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which, together, are also positive and go to infinity as 7, — co. W
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