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Abstract

We study the problem of combined pricing, resource allocation, and overbooking
by service providers involved in dynamic non-cooperative oligopolistic competition on
a network that represents the relationships of the providers to one another and to
their customers when service demand is uncertain. We propose, analyze and compute
solutions for a model that is more general than other models reported in the revenue
management (RM) literature to date. In particular previous models typically consider
only three or four of five key RM features that we have purposely built into our model:
(1) pricing, (2) resource allocation, (3) dynamic competition, (4) an explicit network,
and (5) uncertain demand. Illustrative realizations of the abstract problem we study
are those of airline revenue management and service provision by companies facing
resource constraints. Under fairly general regularity conditions, we prove existence
and uniqueness of a pure-strategy Nash equilibrium for dynamic oligopolistic service
network competition described by our model. We also show, again for an appropriate
notion of regularity, that competition leads to the under-pricing of network services.
We are able to numerically quantify the under-pricing gap for an illustrative example
problem of intermediate size. Our proposed algorithm is shown to be implementable
using well-known off-the-shelf commercial software.

Keywords : dynamic games, variational inequalities, revenue management, pricing
and allocation, overbooking



APPENDIX : Proofs

Proof of Lemma 1. Note that the expected refunds and overbooking costs are separable
in resource type. Taking the partial derivative of OBC; with respect to 1:; N We obtain

8OBCf 0 { f
5'3:;7]\, 0z

nj.gz[¢(z)—z(1—¢'(2))]}' o Rf'(l_o‘;c)

= -} 07(1-2(2))-

f !
+R; - (1 — aj>
After substituting for oz using

O'Z:\/Oé;'(l—af)'l‘i]v

and using the fact that z is normally distributed, one obtains after some simplification the
following:
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using the identity dF'(z) = f(z)dz
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integrating by parts the third term of the right hand side we obtain
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Hence the proof. B

Proof of Lemma 2. To show Hy; is strictly concave in u{ , we need to establish

Hy, (pf,u“;Af;pt‘f;t) > uHy (p{,ul;kf;pJf;t) +(1— p) Hy (pﬁumf;pff;t)

where u* = puq + (1 — p) ug with p € [0, 1] with is same as
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Therefore it will suffice if we can show that [ elrir) F (1) dr is strictly convex in u{ , which
is true as
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which completes the proof. B

Proof of Lemma 3. Part (a) : In Lemma 1 we have already established

00BC;

Gx]N

>0

If it can be shown that 85’3;‘7]\1 /6)\{ > ( for all ¢ € C, this will imply

9OBC;  9OBC; drly

= >0forallleC
ox,  oxly o

3



Differentiating :c; N W.I.t. )\lf using the expression (same as the eqn (4) of the main paper)
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The last inequality is obtained as the pdf f (-) > 0, a;; is either 0 or 1. This concludes the
first part of the proof.

Part (b) : Differentiating x;.cN w.r.t. plf’t using (2)
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From Lemma 1 we have 00BC) / Gsc; y > 0 and from item 5 of Assumption A2, e{ , is

increasing in pf Finally, from Assumption Al %;y) > 0 thus
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Hence the proof. B

Proof of Lemma 4. We observe that the Hamiltonian is separable, i.e., Hy; = >, s H}’t
where
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Proof of Lemma 5. We have seen in Lemma 4 that for a given A/ (thus ¢/) the game
is supermodular. In addition, if we are able to show that H;; has increasing differences in

<p{ of ) for each p, ! , we can use Theorem 6 to establish that the extremal equilibria of the

revenue optimization game are increasing functions of rhe shadow price of resources, M.
Differentiating Hy; by c;-c we obtain
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Therefore, condition (i¢) of Theorem 1 (Theorem 7; Amir 2003) is satisfied as well, hence
the extremal equilibria of the game are increasing functions of ¢/l

Proof of Lemma 6. Since the Hamiltonian is separable and from (6)
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here once again we have utilized the identity. Since 8'(y) > 0 from IGFR assumption,
8" (y) < 0 for all y > 0 which completes the proof. B

Proof of Theorem 2. It is relatively straightforward to show that a policy p* that solves
the variational inequality problem: find p{ ; € Ay such that

[Vp[Hf (pf*;kf;pff;t)r' (pf —pf*> <0 (13)

(same as eqn (22) of the paper) for each firm f € F simultaneously, also solves the joint
variational inequality problem: find p* € K such that
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(same as eqn (25) of the paper). We will now show the converse, i.e., the solution to joint
variational inequality problem (14) solves variational inequality problems (13) for each firm
f simultaneously. That is, if p* is a solution to joint VI problem (14), then for each firm f
€ F, p’* solves the variational inequality problem (13) with competitors’ policies p~/ given
by p~7*. Own shadow price is computed by solving the equation

M= =V, OBCy (p*, 5777, A7)

Note that (14) is equivalent to the following fictitious mathematical program
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where it is essential to recognize that G (p) is a linear functional that assumes knowledge of
the solution of (14); as such G (p) is a mathematical construct for use in analysis and has no
meaning as a computational device. The corresponding necessary and sufficient conditions
for this mathematical program are identical to (13) for all f € F as because
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hence the proof. B



Proof of Theorem 3. We need to establish that there exists at least one solution of the
VI (14). Since any solution of (14) is a Nash equilibrium of the game (per Theorem 2),
then that solution will also be a Nash equilibrium of the game. Note that the strategy
space of each firms’ pricing decision for each service is a closed interval, hence p is a non-
empty, compact and convex set of RIZIXISIX(N=1) " Fyrther, ( VpHi - V7 Hg )T
is a continuous mapping from K into RIZIXISIX(N=1) = Therefore, invoking Theorem 3.1 of
Harker and Pang (1990) we establish that there exists a solution of (14), hence the proof.
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Proof of Theorem 4. To establish the claim, we should be able to establish

O (pi, A", t)

>0forallie S, feF,te0,N—1] (18)
op!
pz,t
and y
onf (5. 5,7 1)
7 <OforalieS, feF,te[0,N—1] (19)
8pi,t
To establish (18), we will consider 2 cases : (a) pfc: = p{mm and (b) p{: > p{min.
Case (a) : When p{ : = plf mins Since cooperative equilibrium has also the same bounds
on service prices, 13{ . > plf win(= p,{ 1)
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Case (d) : We need to establish (19) when ﬁlf . < pzf max- At this cooperative equilibrium
point
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From (20) we know every term inside the summation are non-negative; thus
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Therefore, (18) says that at the non-cooperative Nash equilibrium point, the joint profit can
be further increased if all firms can collude. But no firm will take such strategy unilaterally
because it has already made the best response given other firms’ pricing decisions. Further,
(19) says that if firms adopt cooperative strategies while they are actually involved in non-
cooperative equilibrium, they have an incentive to decrease prices to attract more demand.
Thus cooperative strategy is clearly not their best response strategy and is not a Nash
equilibrium. W

Proof of Theorem 5. The fixed point problem considered requires that
.1 2
p = argmin §Hp—a-F(p,/\,t)—qH tqek (21)
where a € 5}& . That is, we seek the solution of the following mathematical program
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Let us take ¢* € K be a minimum of the above finite dimensional mathematical program
and recall that K is convex. Since J(q) is convex and differentiable at ¢* € K, a necessary
and sufficient condition is
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further
VI(g")=(-1)[p—a- F(pAt)—q] (23)
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By virtue of (21) p = ¢*, so (23) may be restated as
VJ(¢") =a-F(q, A1)

where \* is obtained by solving the equation
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(14) follows immediately, and the theorem is proved. B

Proof of Theorem 6. We need to study the negative of the Jacobian matrix. If we can
establish that at the point p™ where
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(the above eqn is same as eqn (44) of the paper) holds the diagonal terms of the negative
Jacobian matrix are strictly positive, off-diagonal terms are nonnegative and the matrix is
strictly diagonally dominant, it will follow automatically that the negative Jacobian matrix
has all principal minors positive. Hence (25) has an unique solution. We know
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Therefore the diagonal terms

Now, we need to show that
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So,
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The terms in the first bracket on the right hand side are non-positive from item 8 of
assumption A2. The remaining group of terms has been shown to be negative in the
proof of Lemma 6 (in particular please refer to (11)) after a change of variable F(y) =

T \f
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Therefore, (25) has only one solution. From here we conclude that the VI : find p** € K

such that .
> [foHf (pf’”*;k“;p_f’”*ﬂ : (pf —pf’“*) <0 (28)
feF

for all p € K

where .
K= H {pf :plj;in Spf Sp{nax }
feF

(which is same as eqn (43) of the paper) also has one solution which can be expressed as

pi’t"* = max (pimin, min (p{’t”,pl{maX))

where p{ /" is an element of the unique vector that solves (25). Hence the proof. W
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