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Appendix

PROOF to PROPOSITION 3.1.

Let ˙̃m(t) = −εm̃(t), m̃(0) = m0 > 0. Then
m̃(t) = m0e−εt > 0, for 0 6 t 6 T. Since
ah(P2, m, Q2)g(0, Q1) + h(P2, m, Q2) > 0, it is obvious
that m(t) > m̃(t) > 0, where m(t) is a solution of (6)
for arbitrary P2(t) and Q1(t). Since m(t) > 0, we can
similarly conclude that Q1(t) > 0 for 0 6 t 6 T. More-
over, it is easy to see that m0

> 0 and Q0
1 > 0 imply

m(t) > 0 and Q1(t) > 0 for 0 6 t 6 T. �

PROOF to PROPOSITION 3.2.

(a) From (4), we see that Vα
O(0, Q0

1, m0) = J(P∗
2 (t |

α)) or simply Vα
O = J(P∗

2 (t | α)), where P∗
2 (t |

α) is the optimal price trajectory given α. Let

Q
P2(t)
1 (t | α) denote the software quality trajec-

tory given a price trajectory P2(t) and α. Simi-

larly, let mP2(t)(t | α) denote the user network
size trajectory given a price trajectory P2(t)
and α.

From (5), we have Q1(t) = Q0
1e−δt +

αe−δt
∫ t

0 eδτm(τ)dτ, which increases with α for
every fixed trajectory m(t). Next we see from
(6) that for a given price trajectory P2(t) > 0,
∂ṁ(t)

∂Q1(t)
= ah(P2(t), m(t), Q2(t))

∂g(t)

∂Q1(t)
> 0,

which means that ṁ(t) increases with Q1(t).
This implies that both Q1(t) and m(t) in-
crease as α increases for a given price trajec-
tory P2(t) > 0.

Let 0 < α1 < α2. Then Q
P2(t)
1 (t | α1) 6

Q
P2(t)
1 (t | α2) and mP2(t)(t | α1) 6 mP2(t)(t |

α2). By the assumption on the functions h and
σ, it is apparent that J(P2(t | α1) 6 J(P2(t |
α2). By definition, J(P2(t | α1) 6 J(P∗

2 (t |
α1) 6 J(P2(t | α2) 6 J(P∗

2 (t | α2). Therefore,
V

α1
O 6 Vα2

O . This completes the proof.

(b) The proof is similar to part (a). �

PROOF to PROPOSITION 3.3.

From Proposition 3.2, part (b), we know

that
∂VO(0, Q1(0))

∂Q1(0)
> 0. Therefore, λ(0) =

∂VO(0, Q1(0))

∂Q1(0)
> 0. The same argument extends

to λ(t) =
∂VO(0, Q1(t))

∂Q1(t)
> 0. �

PROOF to PROPOSITION 3.4. This proof requires
Lemma .1.

LEMMA .1 In the open source model, P2 + µ(ag(0, Q1) +
1) > 0, for 0 6 t 6 T.

PROOF to LEMMA .1.

According to (11) and (12), we know that there are
two cases:

Case1:
{

h(P2, m, Q2) + [P2 + µ(ag(0, Q1) + 1)] ∂h
∂P2

}∣∣∣
P2=0

6 0

and η2 > 0,

and Case2:
{

h(P2, m, Q2) + [P2 + µ(ag(0, Q1) + 1)]
∂h

∂P2

}∣∣∣∣
P2>0

= 0

and η2 = 0.

In case 1, [P2 + µ(ag(0, Q1) + 1)]|P2=0 =

µ(ag(0, Q1) + 1) > −h(P2, m, Q2)/
∂h

∂P2

∣∣∣∣
P2=0

> 0.

In case 2, [P2 + µ(ag(0, Q1) + 1)]|P2>0 =

−h(P2, m, Q2)/
∂h

∂P2

∣∣∣∣
P2>0

> 0. The result follows.

By contradiction. Suppose at an arbitrarily chosen
time τ ∈ [0, T], µ(τ) < 0. By Proposition 3.3 and
Lemma .1,

µ̇ = (ρ + ε)µ − αλ − [P2 + µ(ag(0, Q1) + 1)]
∂h

∂m
< 0.

Therefore, µ(τ) < 0 for τ 6 t 6 T. This contradicts
µ(T) > 0. So µ(τ) > 0. Since τ is arbitrary, we can
conclude that µ(T) > 0 for 0 6 t 6 T. �

PROOF to PROPOSITION 3.5.

If P∗
2 > 0, then h + P2

∂h

∂P2
+

µ(ag(0, Q1) + 1)
∂h

∂P2

∣∣∣∣
P∗

2

= 0 (from (11)). By Propo-

sition 3.4 and the assumptions that g > 0 and
∂h

∂P2
6 0, we have µ(ag(0, Q1) + 1)

∂h

∂P2

∣∣∣∣
P∗

2

6 0.

Therefore, h + P2
∂h

∂P2

∣∣∣∣
P∗

2

> 0. By defini-

tion,
∂FO

∂P2

∣∣∣∣
P̂2

= h + P2
∂h

∂P2

∣∣∣∣
P̂2

= 0. Then

P̂2 = h + P2
∂h

∂P2

∣∣∣∣
P̂2

> 0. By the concavity of FO,

we conclude P∗
2 (t) 6 P̂2(m∗(t), Q2(t)) for 0 6 t 6 T.

Moreover, if the salvage value is zero at time T, then
µ(T) = 0. From the previous argument, it is easy to
show P∗

2 (T) = P̂2(m∗(T), Q2(T)). �
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PROOF to PROPOSITION 3.6. The proof is similar to
that of Proposition 3.1. �

PROOF to PROPOSITION 3.7.

The proofs for part (a) and (b) are similar to that
of Proposition 3.2. (c) Using the Envelope Theorem

(e.g., Varian, 1978, Page 268), we have
dVC

dw
=

∂L

∂w
=

−
∫ T

0 N2dt. Therefore, the optimal closed source profit
decreases with w. �

PROOF to PROPOSITION 3.8. The proof is similar to
that of Proposition 3.3. �

PROOF to PROPOSITION 3.9 .

The proof requires Lemma .2 and Proposition 3.8.

LEMMA .2 In the closed source model, P1 + aµ > 0 and
P2 + µ + (P1 + aµ)g(P1, Q1) > 0, for 0 6 t 6 T.

PROOF to LEMMA .2. The proof is similar to that of
Lemma .1. �

By contradiction. Suppose at an arbitrarily chosen
time τ ∈ [0, T], µ(τ) < 0. By Proposition 3.8 and
Lemma .2,

µ̇ = (ρ + ε)µ − [P2 + µ + (P1 + aµ)g(P1, Q1)]
∂h

∂m
< 0.

Therefore, µ(τ) < 0 for τ 6 t 6 T. This contradicts
µ(T) > 0. So µ(τ) > 0. Since τ is arbitrary, we can
conclude that µ(T) > 0 for 0 6 t 6 T. �

PROOF to PROPOSITION 3.10.

If P∗
1 > 0, then

(
g(P1, Q1) + P1

∂g

∂P1

)
h(P2, m, Q2) +

aµ
∂g

∂P1
h(P2, m, Q2)

∣∣∣∣
P∗

1 ,P∗
2

= 0 (from (20)). We can also

say that g(P1, Q1) + P1
∂g

∂P1
+ aµ

∂g

∂P1

∣∣∣∣
P∗

1

= 0. By Propo-

sition 3.9 and the assumption that
∂g

∂P1
6 0, we have

aµ
∂g

∂P1

∣∣∣∣
P∗

1

6 0. Therefore, g(P1, Q1) + P1
∂g

∂P1

∣∣∣∣
P∗

1

>

0. By definition,
∂FC

∂P1

∣∣∣∣
P̂1,P̂2

=

(
g(P1, Q1) + P1

∂g

∂P1

)

h(P2, m, Q2)|P̂1,P̂2
= 0. We can also say that

g(P1, Q1) + P1
∂g

∂P1

∣∣∣∣
P̂1

= 0. Then P̂1 = −g/
∂g

∂P1

∣∣∣∣
P̂1

>

0. By the concavity of FC, we conclude P∗
1 (t) 6

P̂1(m∗(t), Q∗
1(t), Q2(t)) for 0 6 t 6 T. Similarly, if

P∗
2 > 0, then h(P2, m, Q2) + [P2 + P1g(P1, Q1)]

∂h

∂P2
+

µ(ag(P1, Q1) + 1)
∂h

∂P2

∣∣∣∣
P∗

1 ,P∗
2

= 0 (from (21)). Clearly,

P∗
2 is a function of P∗

1 . Let P∗
2 (P1) is the

solution to h(P2, m, Q2) + [P2 + P1g(P1, Q1)]
∂h

∂P2
+

µ(ag(P1, Q1) + 1)
∂h

∂P2
= 0. It can be shown

that P∗
2 (P∗

1 ) 6 P∗
2 (P̂1). By Proposition 3.9 and

the assumptions that g > 0 and
∂h

∂P2
6 0,

we have µ(ag(P1, Q1) + 1)
∂h

∂P2

∣∣∣∣
P∗

1 ,P∗
2

6 0. There-

fore, h(P2, m, Q2) + [P2 + P1g(P1, Q1)]
∂h

∂P2

∣∣∣∣
P∗

1 ,P∗
2

>

0. By definition,
∂FC

∂P2

∣∣∣∣
P̂2

= h(P2, m, Q2) +

[P2 + P1g(P1, Q1)]
∂h

∂P2

∣∣∣∣
P̂1,P̂2

= 0. Clearly, P̂2 is a func-

tion of P̂1. We denote it as P̂2(P̂1). By the concav-
ity of FC, we know that P∗

2 (P̂1) 6 P̂2(P̂1). There-

fore, P∗
2 (P∗

1 ) 6 P̂2(P̂1). we conclude P∗
2 (t) 6

P̂2(m∗(t), Q∗
1(t), Q2(t)) for 0 6 t 6 T. More-

over, if the salvage value is zero at time T, then
µ(T) = 0. From the previous argument, it is easy to
show P∗

1 (T) = P̂1(m∗(T), Q∗
1(t), Q2(T)) and P∗

2 (T) =

P̂2(m∗(T), Q∗
1(t), Q2(T)). �

PROOF to COROLLARY 4.1.

(i) Exponential demand function. From Propo-
sition 4.1, P∗

2 (t) 6 m∗(t)Q2(t). From (6), ṁ =

(a exp(−
c

Q1
) + 1) exp(−

P2

mQ2
) − εm, m(0) = m0. Let

˙̄m = (a + 1) − εm, m̄(0) = m0. Then m̄(t) = m0e−εt +
(a + 1)(1 − e−εt)/ε, 0 6 t 6 T. Clearly, ˙̄m > ṁ. The
result follows.

(ii) Linear-price demand function. Proof is similar
to (i). �

PROOF to COROLLARY 4.2.

(i) Exponential demand function. From Proposi-
tion 4.1, P∗

1 (t) 6 Q∗
1(t). From (14), Q̇1 = kN −

δQ1, Q1(0) = Q0
1. Let ˙̄Q1 = kN(0)− δQ̄1, Q̄1(0) = Q0

1,
where N(0) is the number of in-house programmers
at time 0. Then Q̄1(t) = Q0

1e−δt + kN(0)(1 − e−δt)/δ,

0 6 t 6 T. ˙̄Q1 > Q̇1 since N is decreasing over time.
The result follows.

From Proposition 4.1, P∗
2 (t) 6 m∗(t)Q2(t) −

P̂∗
1 (t)g(P̂∗

1 (t), Q∗
1(t)) 6 m∗(t)Q2(t). From (15), ṁ =
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(a exp(−
P1 + c

Q1
) + 1) exp(−

P2

mQ2
) − εm, m(0) = m0.

Let ˙̄m = (a + 1) − εm, m̄(0) = m0. Then m̄(t) =
m0e−εt + (a + 1)(1 − e−εt)/ε, 0 6 t 6 T. Clearly,
˙̄m > ṁ. The result follows.

(ii) Linear-price demand function. Proof is similar
to (i). �




