#### 10.1287/POMS.1080.0015ec

# Flexible Backup Supply and the Management of Lead-Time Uncertainty

#### Panos Kouvelis<sup>1</sup> and Jian Li<sup>2</sup>

<sup>1</sup>Olin School of Business, Washington University in St.Louis, St.Louis, MO 63130
<sup>2</sup>College of Business and Management, Northeastern Illinois University, Chicago, IL 60625

November 5, 2007

## 1 Appendix

**Proof of Proposition 1.** 1) With a little algebra, we can get, if 1 > r > 0 holds, then

$$R(\beta|r) = \frac{1}{2} \frac{(\pi+h)^2 - h^2}{\pi+h} \left(\beta T - \frac{(\pi r T - (c_f - c_d))}{(\pi+h)^2 - h^2} (\pi+h)\right)^2 + \frac{1}{2} \pi r^2 T^2 + \frac{1}{2} h (1-r)^2 T^2 - \frac{1}{2} \frac{(\pi r T - (c_f - c_d))^2}{(\pi+h)^2 - h^2} (\pi+h)$$

and if  $r \ge 1$  holds, then

$$R(\beta|r) = \frac{1}{2} \frac{(\pi+h)^2 - h^2}{\pi+h} \left(\beta T - \frac{(\pi r T - (c_f - c_d))}{(\pi+h)^2 - h^2} (\pi+h)\right)^2 + \pi r T^2$$
$$-\frac{1}{2} \pi T^2 - \frac{1}{2} \frac{(\pi r T - (c_f - c_d))^2}{(\pi+h)^2 - h^2} (\pi+h)$$

Therefore  $R(\beta|r)$  is minimized when  $\beta T - \frac{(\pi r T - (c_f - c_d))}{(\pi + h)^2 - h^2} (\pi + h) = 0$ . This leads to our part 1) conclusion in view of the boundary conditions for  $\beta$ .

- 2)  $\beta^* > 0$  hold if and only if  $\pi r T (c_f c_d) > 0$ ; and  $\beta^* < 1$  hold if and only if  $\frac{(\pi r T (c_f c_d))}{(\pi + h)^2 h^2} (\pi + h) < T$ . This leads to our part 2) conclusion.
  - 3) Part 3) conclusion is true because  $(c_f c_d) > 0$  and  $\frac{\pi + h}{\pi + 2h} < 1$ .

**Proof of Algorithm 1.** We first examine the situations where  $\underline{l_f} \leqslant T$  holds. We will analyze the cases defined in (8). For the case  $\beta < \frac{l_f}{\overline{T}}, r \leqslant 1$ , since it is obvious that the optimal  $l_f$  is  $\underline{l_f}$ , we focus on the decision for  $\beta$ . It can be seen that  $R\left(\beta, l_f^* | r\right)$  is linear in  $\beta$  with the first order

derivative

$$\frac{\partial R\left(\beta, l_f^* | r\right)}{\partial \beta} = T\left(-\pi \left(rT - \underline{l_f}\right) + (c_f - c_d)\right)$$

Thus, when  $rT \leqslant \frac{c_f - c_d}{\pi} + \underline{l_f}$ , the optimal  $\beta$  is 0; when  $rT > \frac{c_f - c_d}{\pi} + \underline{l_f}$ , the optimal  $\beta$  is  $\frac{l_f}{T}$ .

For the case  $\beta \geqslant \frac{l_f}{\overline{T}}$ ,  $r \leqslant 1$ , it can be seen that  $R(\beta, l_f | r)$  is convex in  $l_f$  with the first order derivative

$$\frac{\partial R(\beta, l_f | r)}{\partial l_f} = (\pi + h) l_f - h\beta T$$

Therefore the decision rule on  $l_f$  for given  $\beta$  is: to choose  $l_f = \frac{h}{\pi + h} \beta T$  if  $\frac{h}{\pi + h} \beta T \geqslant \underline{l_f}$ , and to choose  $\underline{l_f}$  otherwise. The value of  $R(\beta, l_f | r)$  at the optimal  $l_f$ , denoted by  $R(\beta, l_f^* | r)$ , is accordingly given below

$$R\left(\beta, l_f^* | r\right) = (c_f - c_d) \beta T + \frac{1}{2} \pi \left(rT - \beta T\right)^2 + \frac{1}{2} h \left(T - rT\right)^2 + \begin{cases} \frac{1}{2} \pi \left(\underline{l_f}\right)^2 + \frac{1}{2} h \left(\beta T - \underline{l_f}\right)^2 & \text{if } \beta T \geqslant \underline{l_f}, \frac{h}{\pi + h} \beta T < \underline{l_f}, r \leqslant 1 \\ \frac{1}{2} \frac{\pi h}{\pi + h} \left(\beta T\right)^2 & \text{if } \beta T \geqslant \underline{l_f}, \frac{h}{\pi + h} \beta T \geqslant \underline{l_f}, r \leqslant 1 \end{cases}$$

The first order derivative for  $R\left(\beta, l_f^* | r\right)$  with respect to  $\beta$  can be obtained as follows

$$\frac{dR\left(\beta, l_f^* | r\right)}{d\beta} = \begin{cases} \left(\left(c_f - c_d\right) + \left(\pi + h\right)\beta T - hl_f - \pi r T\right)T & \beta T \geqslant \underline{l_f}, \frac{h}{\pi + h}\beta T < \underline{l_f}, r \leqslant 1 \\ \left(\left(c_f - c_d\right) + \frac{\pi h}{\pi + h}\beta T + \pi \beta T - \pi r T\right)T & \beta T \geqslant \underline{l_f}, \frac{h}{\pi + h}\beta T \geqslant \underline{l_f}, r \leqslant 1 \end{cases}$$

Based on the expression above, it can be seen that with a little algebra,  $R\left(\beta, l_f^* | r\right)$  is convex in  $\beta$  over [0,r] for given r. Therefore the optimal  $\beta$  can be determined from the first order condition given above. Particularly, we have: a) if  $rT < \frac{c_f - c_d}{\pi} + \underline{l_f}$ , then the optimal  $\beta$  is 0. This is because  $\frac{dR(\beta, l_f^* | r)}{d\beta} > 0$  for  $\beta \in [0, r]$ ; b) if rT is greater than  $\frac{c_f - c_d}{\pi} + \underline{l_f}$  and less than  $\frac{c_f - c_d}{\pi} + \frac{(\pi + h)^2 - h^2}{\pi h} \underline{l_f}$ , then the optimal  $\beta T$  is  $\frac{\pi}{\pi + h} (rT) + \frac{h}{\pi + h} \underline{l_f} - \frac{c_f - c_d}{\pi + h}$ , which is less than rT. This is because  $\frac{dR(\beta, l_f^* | r)}{d\beta}$  is negative at  $\beta = \left(\frac{c_f - c_d}{\pi} + \frac{(\pi + h)^2 - h^2}{\pi h} \underline{l_f}\right)/T$ ; c) if rT is greater than  $\frac{c_f - c_d}{\pi} + \frac{(\pi + h)^2 - h^2}{\pi h} \underline{l_f}$ , then the optimal  $\beta T$  is  $\frac{\pi + h}{(\pi + h)^2 - h^2} (\pi rT - (c_f - c_d))$ , which is less than rT, since  $\frac{dR(\beta, l_f^* | r)}{d\beta}$  is negative at  $\beta = \left(\frac{c_f - c_d}{\pi} + \frac{(\pi + h)^2 - h^2}{\pi h} l_f\right)/T$ .

Similar spirit above can be applied to analyze the cases for r > 1. For the case  $\beta < \frac{l_f}{\overline{T}}, r > 1$ , it is obvious that the optimal  $l_f$  is  $\underline{l_f}$ . Regarding the decision for  $\beta$ , we can get: if  $rT \leqslant \frac{c_f - c_d}{\pi} + \underline{l_f}$  holds, then the optimal  $\beta$  is 0; if  $rT > \frac{c_f - c_d}{\pi} + l_f$  holds, then the optimal  $\beta$  is  $\frac{l_f}{\overline{T}}$ .

For the case  $\beta \geqslant \frac{l_f}{T}$ , r > 1, the optimal  $l_f$  is  $\underline{l_f}$  if  $\frac{h}{\pi + h}\beta T < \underline{l_f}$  holds, and is  $\frac{h}{\pi + h}\beta T$  otherwise.

The value of  $R(\beta, l_f | r)$  at the optimal  $l_f$ , denoted by  $R(\beta, l_f^* | r)$ , is

$$R\left(\beta, l_f^* \middle| r\right) = \left(c_f - c_d\right) \beta T + \left(\frac{1}{2}\pi \left(\underline{l_f}\right)^2 + \pi \left(\underline{l_f} - \beta T\right) \left(rT - \underline{l_f}\right) + \frac{1}{2}\pi \left(T - \underline{l_f}\right)^2 + \pi \left(rT - T\right) \left(T - \underline{l_f}\right) \text{ if } \beta < \frac{l_f}{\overline{T}}, r > 1$$

$$\frac{1}{2}\pi \left(T - \beta T\right)^2 + \pi \left(T - \beta T\right) \left(rT - T\right) + \frac{1}{2}\pi \left(\underline{l_f}\right)^2 + \frac{1}{2}h \left(\beta T - \underline{l_f}\right)^2 \text{ if } \beta T \geqslant \underline{l_f}, \frac{h}{\pi + h}\beta T < \underline{l_f}, r > 1$$

$$\frac{1}{2}\pi \left(T - \beta T\right)^2 + \pi \left(T - \beta T\right) \left(rT - T\right) + \frac{1}{2}\frac{\pi h}{\pi + h} \left(\beta T\right)^2 \text{ if } \beta T \geqslant \underline{l_f}, \frac{h}{\pi + h}\beta T \geqslant \underline{l_f}, r > 1$$

Based on the expression above, we can get the decision of the optimal  $\beta T$ . Particularly, we have: if  $rT < \frac{c_f - c_d}{\pi} + \underline{l_f}$ , then the optimal  $\beta T$  is 0; if rT is between  $\frac{c_f - c_d}{\pi} + \underline{l_f}$  and  $\frac{c_f - c_d}{\pi} + \frac{(\pi + h)^2 - h^2}{\pi h} \underline{l_f}$ , then the optimal  $\beta T$  is  $\frac{\pi}{\pi + h} (rT) + \frac{h}{\pi + h} \underline{l_f} - \frac{c_f - c_d}{\pi + h}$ ; if rT is greater than  $\frac{c_f - c_d}{\pi} + \frac{(\pi + h)^2 - h^2}{\pi h} \underline{l_f}$ , then the optimal  $\beta T$  is  $\frac{\pi + h}{(\pi + h)^2 - h^2} (\pi rT - (c_f - c_d))$ . All of the optimal  $\beta T$  have to be bounded above by T. Particularly, in case  $\frac{\pi + h}{(\pi + h)^2 - h^2} (\pi rT - (c_f - c_d)) > T$  and  $rT > \frac{c_f - c_d}{\pi} + \frac{(\pi + h)^2 - h^2}{\pi h} \underline{l_f}$ , then the optimal  $\beta T$  is T with a cost of  $(c_f - c_d)T + \frac{1}{2}\frac{\pi h}{\pi + h}T^2$  for  $R\left(\beta^*, l_f^*|r\right)$  if  $\frac{h}{\pi + h}T \geqslant \underline{l_f}$ ; and the optimal  $\beta T$  is T with a cost of  $(c_f - c_d)T + \frac{1}{2}\pi \left(\underline{l_f}\right)^2 + \frac{1}{2}h\left(T - \underline{l_f}\right)^2$  for  $R\left(\beta^*, l_f^*|r\right)$  if  $\frac{h}{\pi + h}T < \underline{l_f}$ . In case that  $\frac{\pi}{\pi + h} (rT) + \frac{h}{\pi + h} \underline{l_f} - \frac{c_f - c_d}{\pi + h} > T$  and rT is between  $\frac{c_f - c_d}{\pi} + \frac{l_f}{\pi}$  and  $\frac{c_f - c_d}{\pi} + \frac{(\pi + h)^2 - h^2}{\pi h} \underline{l_f}$ , then the optimal  $\beta T$  is T with a cost of  $(c_f - c_d)T + \frac{1}{2}\pi \left(\underline{l_f}\right)^2 + \frac{1}{2}h\left(T - \underline{l_f}\right)^2$  for  $R\left(\beta^*, l_f^*|r\right)$ .

We now examine the situations where  $\underline{l_f} > T$  holds. It is obvious that the optimal  $l_f$  is  $\underline{l_f}$ . Recall that

$$R(\beta, l_f | r) = (c_f - c_d) \beta T + \frac{1}{2} \pi (\beta T)^2 + \pi (\beta T) \left(\underline{l_f} - \beta T\right) + \frac{1}{2} \pi (T - \beta T)^2 + \pi (T - \beta T) (rT - T)$$

It can be seen that with a little algebra, if  $rT \leqslant \frac{c_f - c_d}{\pi} + \underline{l_f}$ , then the optimal  $\beta T$  is zero with a cost of  $\frac{1}{2}\pi T^2 + \pi T (rT - T)$  for  $R\left(\beta^*, l_f^* | r\right)$ ; if  $rT > \frac{c_f - c_d}{\pi} + \underline{l_f}$ , then the optimal  $\beta T$  is T with a cost of  $(c_f - c_d)T + \frac{1}{2}\pi T^2 + \pi T \left(\underline{l_f} - T\right)$  for  $R\left(\beta^*, l_f^* | r\right)$ .

Putting all the above together yields the proof for Algorithm 1.

**Proof of Proposition 2.** With a little algebra, we can decompose  $\overline{V}_{\text{II}}\left(Q_1,Q_2|\xi_0,l,\widetilde{T}\right)$  as follows

$$\overline{V}_{\text{II}}\left(Q_{1}, Q_{2} | \xi_{0}, l, \widetilde{T}\right) = \overline{V}_{\text{II}}^{1}\left(Q_{1} | \xi_{0}, l, \widetilde{T}\right) + \overline{V}_{\text{II}}^{2}\left(Q_{2} | \xi_{0}, l, \widetilde{T}\right) + \left(c_{f} - c_{n}\right)\left(T - \widetilde{T}\right)$$

$$(13)$$

where

$$\overline{V}_{II}^{1}\left(Q_{1}|\xi_{0},l,\widetilde{T}\right) = \left(c_{f} - c_{d}\right)Q_{1} + \frac{1}{2}\frac{\pi h}{\pi + h}Q_{1}^{2} + \frac{1}{2}\pi\left(\xi_{0} - Q_{1}\right)^{2}$$
(14)

$$\overline{V}_{II}^{2}\left(Q_{2}|\xi_{0},l,\widetilde{T}\right) = -(c_{f}-c_{d})Q_{2} + \frac{1}{2}\frac{\pi h}{\pi+h}\left(T-\widetilde{T}-Q_{2}\right)^{2} + \begin{cases} \frac{1}{2}h\left(\widetilde{T}+Q_{2}-\xi_{0}\right)^{2} & \text{if } Q_{1}<\xi_{0}\leqslant\widetilde{T}+Q_{2} \\ -\frac{1}{2}\pi\left(\widetilde{T}+Q_{2}-\xi_{0}\right)^{2} & \text{if } Q_{1}\leqslant\widetilde{T}+Q_{2}<\xi_{0} \end{cases}$$
(15)

The first order derivatives of  $\overline{V}_{\text{II}}\left(Q_1,Q_2|\xi_0,l,\widetilde{T}\right)$  with respect to  $Q_1$  and  $Q_2$  are, respectively,

$$\frac{\partial \overline{V}_{II}\left(Q_1, Q_2 | \xi_0, l, \widetilde{T}\right)}{\partial Q_1} = \left(c_f - c_d\right) + \frac{\pi h}{\pi + h} Q_1 + \pi \left(Q_1 - \xi_0\right) \tag{16}$$

$$\frac{\partial \overline{V}_{\text{II}}\left(Q_{1}, Q_{2} | \xi_{0}, l, \widetilde{T}\right)}{\partial Q_{2}} = -\left(c_{f} - c_{d}\right) + \frac{\pi h}{\pi + h} \left(\widetilde{T} + Q_{2} - T\right) + \begin{cases} h\left(\widetilde{T} + Q_{2} - \xi_{0}\right) & \text{if } Q_{1} < \xi_{0} \leqslant \widetilde{T} + Q_{2} \\ -\pi \left(\widetilde{T} + Q_{2} - \xi_{0}\right) & \text{if } Q_{1} \leqslant \widetilde{T} + Q_{2} < \xi_{0} \end{cases}$$
(17)

Based on the expressions above (13), (14), (15), (16) and (17), we see that the following properties hold: 1)  $\overline{V}_{\text{II}}\left(Q_1,Q_2|\xi_0,l,\widetilde{T}\right)$  is separable in  $Q_1$  and  $Q_2$ ; and,  $\overline{V}_{\text{II}}\left(Q_1,Q_2|\xi_0,l,\widetilde{T}\right)$  is convex in  $Q_1$ ; 2)  $\overline{V}_{\text{II}}\left(Q_1,Q_2|\xi_0,l,\widetilde{T}\right)$  is concave in  $Q_2$  for  $\widetilde{T}+Q_2<\xi_0$  and is convex in  $Q_2$  for  $Q_1<\xi_0\leqslant\widetilde{T}+Q_2$ . Furthermore, by the expressions for  $Q_1(\xi_0)$  and  $Q_2(\xi_0)$  and the expressions above, it can be seen that  $Q^{UC} = (Q_1(\xi_0),Q_2(\xi_0))$  is the unique local minimizer of (10) without constraints.

If  $Q_1=Q_2$ , then the first-order derivative of  $\overline{V}_{\mathrm{II}}\left(\left.Q_2,Q_2\right|\xi_0,l,\widetilde{T}\right)$  is

$$\frac{\partial \overline{V}_{\text{II}}\left(Q_{2}, Q_{2} | \xi_{0}, l, \widetilde{T}\right)}{\partial Q_{2}} = \frac{\pi h}{\pi + h} Q_{2} + \frac{\pi h}{\pi + h} \left(\widetilde{T} + Q_{2} - T\right) + \pi \left(Q_{2} - \xi_{0}\right) + \begin{cases} h\left(\widetilde{T} + Q_{2} - \xi_{0}\right) & \text{if } Q_{2} < \xi_{0} \leqslant \widetilde{T} + Q_{2} \\ -\pi \left(\widetilde{T} + Q_{2} - \xi_{0}\right) & \text{if } Q_{2} \leqslant \widetilde{T} + Q_{2} < \xi_{0} \end{cases}$$

$$(18)$$

The expression above implies that  $\overline{V}_{\text{II}}\left(Q_2,Q_2|\xi_0,l,\widetilde{T}\right)$  is piecewise convex in  $Q_2$ . Based on (18), we can get the expression for the minimizer of  $\overline{V}_{\text{II}}\left(Q_2,Q_2|\xi_0,l,\widetilde{T}\right)$ . This turns out that  $Q^{OA} = \left(Q_2^{OA},Q_2^{OA}\right)$  is the minimizer of  $\Gamma_{\text{II}}\left(Q_2,Q_2|\xi_0,l,\widetilde{T}\right)$ .

If 
$$Q_1 = \widetilde{T} + Q_2$$
, then  $\overline{V}_{\text{II}}\left(\widetilde{T} + Q_2, Q_2 \middle| \xi_0, l, \widetilde{T}\right)$  has an expression

$$\left(c_{f}-c_{d}\right)\widetilde{T}+\left(c_{f}-c_{n}\right)\left(T-\widetilde{T}\right)+\frac{1}{2}\frac{\pi h}{\pi+h}\left(\widetilde{T}+Q_{2}\right)^{2}+\frac{1}{2}\frac{\pi h}{\pi+h}\left(T-\widetilde{T}-Q_{2}\right)^{2}$$

which is convex in  $Q_2$ . It can be easily verified that  $Q^{BC} = (\widetilde{T} + Q_2^{BC}, Q_2^{BC})$  is the minimizer of  $\overline{V}_{II}(\widetilde{T} + Q_2, Q_2 | \xi_0, l, \widetilde{T})$ . Similarly it can be shown that if  $Q_2 = 0$ , then  $\overline{V}_{II}(Q_1, 0 | \xi_0, l, \widetilde{T})$  is minimized at  $Q^{CO} = (Q_1^{CO}, 0)$  satisfying

$$Q_1^{CO} = \begin{cases} 0 & \text{if } \pi \xi_0 \leqslant (c_f - c_d) \\ \frac{\pi \xi_0 - (c_f - c_d)}{\frac{\pi h}{\pi + h} + \pi} & \text{if } 0 \leqslant \frac{\pi \xi_0 - (c_f - c_d)}{\frac{\pi h}{\pi + h} + \pi} \leqslant \widetilde{T} \\ \widetilde{T} & \text{if } \frac{\pi \xi_0 - (c_f - c_d)}{\frac{\pi h}{\pi + h} + \pi} \geqslant \widetilde{T} \end{cases}$$

, and that if  $Q_2 = T - \widetilde{T}$ , then  $\overline{V}_{\text{II}}\left(Q_1, T - \widetilde{T} \middle| \xi_0, l, \widetilde{T}\right)$  is minimized at  $Q^{AB} = \left(Q_1^{AB}, T - \widetilde{T}\right)$  satisfying

$$Q_1^{AB} = \begin{cases} T - \widetilde{T} & \text{if } \frac{\pi\xi_0 - \left(c_f - c_d\right)}{\frac{\pi h}{\pi + h} + \pi} \leqslant T - \widetilde{T} \\ \frac{\pi\xi_0 - \left(c_f - c_d\right)}{\frac{\pi h}{\pi + h} + \pi} & \text{if } T - \widetilde{T} \leqslant \frac{\pi\xi_0 - \left(c_f - c_d\right)}{\frac{\pi h}{\pi + h} + \pi} \leqslant T \\ T & \text{if } \frac{\pi\xi_0 - \left(c_f - c_d\right)}{\frac{\pi h}{\pi + h} + \pi} \geqslant T \end{cases}$$

Now, we are ready to show Proposition 2 is valid.

- 1). Since  $\xi_0 \geqslant T$ ,  $Q_2 + \widetilde{T} \leqslant \xi_0$  holds for any  $Q_2 \leqslant T \widetilde{T}$ . Thus  $\overline{V}_{II}\left(Q_1, Q_2 | \xi_0, l, \widetilde{T}\right)$  is concave in  $Q_2$ . For any  $Q_1$ ,  $\overline{V}_{II}\left(Q_1, Q_2 | \xi_0, l, \widetilde{T}\right)$  could be minimized only at the boundary points of the feasible set OABC. The minimum of  $\overline{V}_{II}\left(Q_1, Q_2 | \xi_0, l, \widetilde{T}\right)$  could be achieved only at the four sides of the feasible set OABC illustrated in Figure ??. Since the minimum of  $\overline{V}_{II}\left(Q_1, Q_2 | \xi_0, l, \widetilde{T}\right)$  on the four sides could only be achieved at one of the four points  $Q^{OA}, Q^{CO}, Q^{BC}$  and  $Q^{AB}$ , respectively, part 1) follows.
- 2). Since  $\xi_0 < T$ , there may exist  $Q_2$  such that  $Q_2 + \widetilde{T} > \xi_0$  holds. Thus  $\overline{V}_{II}^2\left(Q_2|\xi_0,l,\widetilde{T}\right)$  is concave-convex in  $Q_2$ . For any  $Q_1$ ,  $\overline{V}_{II}\left(Q_1,Q_2|\xi_0,l,\widetilde{T}\right)$  could be minimized only at the boundary points of the feasible set OABC or  $Q_2\left(\xi_0\right)$ . If  $Q^{UC} \cong \left(Q_1\left(\xi_0\right),Q_2\left(\xi_0\right)\right)$  falls outside the feasible set OABC, then any interior point is dominated by some point on the four sides of the feasible region:  $\overline{OA},\overline{CO},\overline{BC}$  and  $\overline{AB}$ ; therefore, the minimum of  $\overline{V}_{II}\left(Q_1,Q_2|\xi_0,l,\widetilde{T}\right)$  could only be achieved at one of the four points  $Q^{OA},Q^{CO},Q^{BC}$  and  $Q^{AB}$ . If  $Q^{UC} \cong \left(Q_1\left(\xi_0\right),Q_2\left(\xi_0\right)\right)$  is an interior point of the feasible set OABC, then any interior point is dominated by either  $Q^{UC}$  or some point on the four sides. Thus, part 2) follows.  $\blacksquare$

### Modeling parameters and their values for all the numerical examples

| wiodening parameters and their values for an the numerical examples |                                                                                                                             |
|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Figure                                                              | Modeling parameters values                                                                                                  |
| 1.                                                                  | $\pi = 1.8, h = .3, T = 14, \xi \sim Gamma(\mu, \theta), \mu = 5, \theta = 3, c_f - c_d = 2$                                |
| 2.a, 2.b                                                            | $\pi = 1.8, h = .3, T = 14, \xi \sim Gamma(\mu, \theta), \mu = 5, \theta = 3$                                               |
| 3.                                                                  | $\pi = 1.8, h = .3, T = 14, \xi \sim Gamma(\mu, \theta), \mu = 5, \theta = 3 \text{ or } 5, c_f - c_d = 2$                  |
| 4.a, 4.b                                                            | $\pi = 1.8, h = .3, T = 14, \xi \sim Gamma(\mu, \theta), \mu = 5, \theta = 3 \text{ or } 5, c_f - c_d = 2$                  |
| 6.a, 6.b                                                            | $\pi = 1.8, h = .3, T = 14, \xi \sim Gamma(\mu, \theta), \mu = 5, \theta = 3 \text{ or } 5, c_f - c_d = 2, c_f - c_n = 1.5$ |
| 7.a, 7.b                                                            | $\pi = 1.8, h = .3, T = 14, \xi \sim Gamma(\mu, \theta), \mu = 5, \theta = 3, c_n - c_d = 1, l_f = 5$                       |
| 8                                                                   | $\pi = 1.8, T = 14, \xi \sim Gamma(\mu, \theta), \mu = 5, \theta = 3, c_f = 5, c_n = 4, c_d = 3$                            |