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1 Appendix

Proof of Proposition 1. 1) With a little algebra, we can get, if 1 > r > 0 holds, then

1(r+h)*—h2 T — (cf — ¢ 2
R(Blr) = 2% (BT—( (7r—|—h<)2f—h;l)) (7r—|—h)> +§7T7“2T2
— (¢f — cq))?
+%h(l — )T - ;(WZZJF }(l)f; - h‘é)) (r + h)

and if 7 > 1 holds, then

T 2_p2 mrT — (cf — ¢ 2
R(p|r) = ;( t:ﬁh h <5T—( (7?+h()2f—h;)) (7T+h)> + 7rT?
1 o 1(@rT = (cf — ca))? -
2™ (m+h)* = h? (m+h)

Therefore R (5| r) is minimized when ST — % (m+h) = 0. This leads to our part

1) conclusion in view of the boundary conditions for 3.

2) f* > 0 hold if and only if 7T — (cf —cq) > 0; and f* < 1 hold if and only if

(71'7“T— (c‘f —cd))
(m+h)2—h2

3) Part 3) conclusion is true because (c¢y — ¢q) > 0 and

(m+ h) < T. This leads to our part 2) conclusion.

w+h
w+2h

<l =

Proof of Algorithm 1. We first examine the situations where [y <T" holds. We will analyze
l el

the cases defined in (8). For the case § < %, r < 1, since it is obvious that the optimal [ is [y,

we focus on the decision for 8. It can be seen that R (6 , l} |7‘) is linear in 8 with the first order
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derivative

PO (o) )

op
_ _ !
Thus, when 7T’ < 225 4 ly, the optimal 3 is 0; when rT" > et + Iy, the optimal j is %

For the case § > % < 1, it can be seen that R (5, |r) is convex in Iy with the first order

derivative

OR(B.LpIr) %Jff ") _ (x4 )1y — hBT
Therefore the decision rule on Iy for given 3 is: to choose [y = %ﬁT if ﬁﬁT > li’ and
to choose Iy otherwise. The value of R(B,l¢|r) at the optimal l¢, denoted by R (ﬁ, I |7“>, is

accordingly given below

1 1
R(B.1;|r) = (¢f —ea) BT + 5 (1T = BT)* + Sh (T —1T)?
2 2
N %W@) +lh<5T—Lf> if BT > Iy, LT < Iy, < 1
1 (BT)? if BT > Iy, 25 8T >, r <1

The first order derivative for R (ﬁ , Z;Z \7") with respect to 8 can be obtained as follows

dR(B,l’]Hr)_ ((cf—cd) (7r—|—h)BT—hlf—7rrT)T 3

ds B ((Cf—Cd) ﬂ+hﬁT+7rBT—7rrT)T I6]
Based on the expression above, it can be seen that with a little algebra, R (ﬁ , l;‘c ]r) is convex in
B over [0, r] for given r. Therefore the optimal 5 can be determined from the first order condition

given above. Particularly, we have: a) if rT" < M—H ly, then the optimal 5 is 0. This is because

dR(B,1* k)2 —

% > 0 for 8 € [0,7]; b) if rT is greater than <2 —i—lf and less than <4 4 ( HTLr)h hQLf’
dR(B,l%

then the optimal 87" is T (T’T) ml e Cfr J;Ld, which is less than T'. This is because %

™

is negative at § = (Cf <+ lf) /T and is positive at § = (Cf_cd + (ﬂ+h) —h? lf) /T ¢) if rT is

greater than <% 4 (”H;)h*h Iy , then the optimal ST is % (mrT — (¢ — ¢q4)), which is

dR(B,I%|r) . ) _ 2_
less than 7T, since % is negative at 8 = (Cf 4 (WHTLr)h U lf) JT.

™

I
Similar spirit above can be applied to analyze the cases for r > 1. For the case § < %, r>1,

o . . . . . .. . cf—cq
it is obvious that the optimal /7 is ll . Regarding the decision for 3, we can get: if rT < L — 44 Lf
_ !
holds, then the optimal B is 0; if T > M + lf holds, then the optimal f is %
For the case 8 > 7,7 > 1, the optimal I is lf if hhﬁT < Iy holds, and is WLHLBT otherwise.
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The value of R (3,1 |r) at the optimal If, denoted by R (5, I \7"), is

R (8.0} ) = (ey — ca) BT +
%ﬂ(ll)2+w(ll—BT) (rT—Q)+%W(T—ll)2+ﬂ(rT—T)(T—li) iff<Lr>1
%W(T—ﬁT)hw(T—ﬁT)(rT—T)+l7r(zf)2 lh(ﬁT—li>2 if BT > 1y, 28T < ly,r > 1
37 (T = BT)? +7 (T = BT) (rT = T) + § 25 (BT)? if BT > Iy, 58T > 1y, > 1

Based on the expression above, we can get the decision of the optimal BT. Particularly, we have:

if rT < S5 g Iy, then the optimal BT is 0 ; if 7" is between e +l and L 4 (W+h)h —n? Iy,

then the optimal BT is 7 (rT) + 7TJrhlf - cfr+,cld, if rT is greater than ¢ + (WH;Lr)h_h ly , then

the optimal 8T is 77”“2}‘ arT — (cr —¢gq)). All of the optimal ST have to be bounded above
(m+h)>—h? f
)>—h? I

by T. Particularly, in case % (mrT — (cf —cq)) > T and rT > % 4 (TrH;h 5

then the optimal T is T' with a cost of (¢ —cq) T + %ﬂ’thz for R (6* I |r) if #T > ly;

and the optimal T is T with a cost of (¢f —cq) T + §7r (ll) + %h (T - ll) for R (5*, Iy ]r)
if cr—cgd

It > T and rT is between &

LT < ly. In case that 35 (rT) + wﬁhll — —% + 1y and

2 2
Cfﬂ-Cd i (7r+f;aT)h ll’ then the optlmal BT is T with a cost of (cf — cq) T—{—%ﬂ' (ll) —I—%h (T - Lf)
for R (/3*,@': |r>.

We now examine the situations where [y > T" holds. It is obvious that the optimal If is I.

Recall that

R(8,151r) = (e — ca) BT+ g (BT 47 (8T) (I — BT) + 5 (T = BT+ =(T— 6T) (+T ~ T)

f—¢

It can be seen that with a little algebra, if 1" <
cost of 37T?+ 7T (rT —T) for R (,B*, Iy ]r); if T > "% 4 [, then the optimal BT is T with
a cost of (cf —cg) T + 37T + 7T <Lf_ T) for R <B*,l}i \7’)

Putting all the above together yields the proof for Algorithm 1. =

+ Iy, then the optimal 8T is zero with a

Proof of Proposition 2. With a little algebra, we can decompose Vi (Ql, Q2| &y, l,f) as

follows

Vi (Ql,Q2]§0,l,f) =V (Ql’éml:f) + Vi (Q2\§Oal>f> + (cf — cn) (T - TV) (13)

where

1 7h

Vi (Qul€o L T) = (e — ) Qu + 3 Q3+ o7 (€ — Q) (14)
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7121(@2\50757@ = _<Cf_Cd)Q2+;7Tﬂ—-:Lh (T—f—Q2>2 (15)

. %h(f—i—@2—fo)2 if Qu<éo<T+Q2
S (Tr@-g) Qi <T+Q <6

The first order derivatives of Vi (Ql, Q2| &, 1, T ) with respect to Q1 and @2 are, respectively,

oV (Ql,Q2|£0,l,T>

h
90, = (cp —cq)+ WL—HLQI +m(Q1 — &) (16)
aVH (Q15Q2|507Z7T> wh ~
8Q2 = — (Cf — Cd) + m (T + Q2 - T) (17)

B(T+Q &) Q@ <&<T+Q
—W(T+Q2_€0) if Q1 <T+Qs <&

Based on the expressions above (13), (14), (15), (16) and (17), we see that the following properties
hold: 1) Vg (Ql,Qg\éo,l,f) is separable in Q1 and Qs; and, Vi (Ql,Qg\é’O,l,f) is convex
in Q1; 2) Vi (Ql,leﬁo,l,T> is concave in Qo for T + Q2 < & and is convex in @2 for
Q1 < &y < T+ Q. Furthermore, by the expressions for Q1 (£,) and Q3 (&) and the expressions
above, it can be seen that QU= (Q1 (&), Q2 (&) is the unique local minimizer of (10) without
constraints.

If Q1 = Q2, then the first-order derivative of V7 <Q2, Q2| &0, 1, T) is

Vi (@2, Qal 0,1, T 7
II( 2, Q2] &o ) _ ﬂ-thQ—i_ﬂ'Th (T+Q2—T>+7T(Q2—§o) (18)

0Q2 T+
P(T+Q-&) Q<& <T+Qs
—r(T+Q—&) Q<T+Q<g

The expression above implies that Vg (Qg, Q2] &o, l,f) is piecewise convex in (3. Based on
(18), we can get the expression for the minimizer of Vi (Qg, Q2] &0, 1, T) This turns out that
Q042 (Q94,Q94) is the minimizer of I'y; (QQ, Qs €0, 1, T)

IfQ, = T+ Q2, then Vi (f + Q2, Qz‘ o, l,f) has an expression

e T 4 ey (1) £ 378 (P @) 4 L (07 )
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which is convex in Q2. It can be easily verified that QB¢= (TV + QQBC, 230) is the minimizer
of Vi (f + Q2, Qg‘ oy 1, T) Similarly it can be shown that if Q2 = 0, then Vg (Ql, 0| &, 1, f)

is minimized at Q€9= (Qlco, 0) satisfying

0 if 7o < (¢f — ca)
co_ ) mzlaea) g o mhomlerma) 5
1 = m'f’ﬂ' m-f-?r
7 i mo=(er=ca) S F
WT}LJ’_W -

, and that if Qo =T — T , then Vg (Ql,T — T‘ o, l,f) is minimized at Q48 = (Q‘f‘B,T — f)

satisfying
T-T if o—(er—ca) 7
w+h +m
T e e Ry == Y
TR T TR T
T if "o—(er=ca) 5 p
TR T

Now, we are ready to show Proposition 2 is valid.

1). Since & > T, Qo + T < £ holds for any Q2 < T — T. Thus Vi (Ql,Q2|go,l,T) is
concave in Qo. For any Q1, Vs (Ql, Q2] &p, l,f) could be minimized only at the boundary
points of the feasible set OABC. The minimum of V;; (Ql,lefo,l,Tv> could be achieved
only at the four sides of the feasible set O ABC illustrated in Figure ??. Since the minimum
of Vi (Ql,Q2|§0,l,TV> on the four sides could only be achieved at one of the four points
Q%4,QY°, QB¢ and QAB, respectively, part 1) follows.

2). Since &, < T', there may exist Q2 such that Q2 +T > &y holds. Thus V?l (Qg\ oo Z,TV)
is concave-convex in Qs. For any Q1, Vs (Ql,Q2| £O,Z,TV> could be minimized only at the
boundary points of the feasible set OABC or Q2 (&,). If QUE=(Q1 (&), Q2 (&y)) falls outside
the feasible set OABC, then any interior point is dominated by some point on the four sides of
the feasible region: OA, CO, BC and AB; therefore, the minimum of V7 (Ql, Q2| &, 1, T) could
only be achieved at one of the four points Q94, Q€C, QB and Q4B. If QU= (Q1 (&), Q2 (&)
is an interior point of the feasible set OABC, then any interior point is dominated by either

QU or some point on the four sides. Thus, part 2) follows. m
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Modeling parameters and their values for all the numerical examples

Figure | Modeling parameters values

1. 7=18h=.3T =14, ~ Gamma (11,0) ,;u = 5,0 = 3,cf — cq = 2

2.a,2b | m=18h=.3T=14,§ ~ Gamma (u,0) ,u =5, =3

3. 7=18h=.3T=14,§ ~ Gamma (41,0) ,;4 =5,0 =3 or 5,¢cf — cg = 2

4a,4b | m=18h=.3T=14,{ ~ Gamma (u,0), 4 =5, =3 or 5,c; —cqg =2

6.a,6.b | m=18h=.3T=14,{ ~ Gamma (1, 0) ,u=5,0 =3 or 5,cy —cqg=2,¢c§ —c, =1.5
7a,7b | 7=18h=.3T=14,¢{ ~ Gamma (1, 0) ,u =5,0 =3,cp —cq=1,ly=5

8 7 =18,T =14,§ ~ Gamma (u,0) , ;0 = 5,0 = 3,¢cf = 5,cp = 4,cq =3




