PRODUCTION AND OPERATIONS MANAGEMENT

Vol. 17, No. 2, March-April 2008, pp. xxx–xxx ISSN 1059-1478 |08|172|0xxx

POMS

©2008 Production and Operations Management Society

E-Companion of: Application Development Using Fault Data

Appendix A. Proofs

We prove Theorem 2.1 for the case when $g(\tau)$ is strictly convex and differentiable through a series of lemmas. The general case follows similarly.

LEMMA A.1 There exists a unique threshold $F_{M-1}(t)$ for the (M-1)st release, and the optimal cost function is given by

$$V_{M-1}(B,t) = \begin{cases} K_M + K_{M-1} + c_{M-1}B & \text{if } B \geqslant F_{M-1}(t), \\ + c_M EG(0, T_t^M) & \\ K_M + c_M EG(B, T_t^M) & \text{if } B < F_{M-1}(t). \end{cases}$$
(13)

PROOF. Since a final coordination is enforced, the optimal cost function for the last release is

$$V_M(B,t) = K_M + c_M B. (14)$$

Substituting (14) into (7) and (8) with m = M - 1 gives

$$V_{M-1}^{c}(B,t) = K_M + K_{M-1} + c_{M-1}B + c_M EG(0, T_t^M),$$

$$V_{M-1}^{n}(B,t) = K_M + c_M EG(B, T_t^M).$$

Then,

$$V_{M-1}^{c}(B,t) - V_{M-1}^{n}(B,t)$$

$$= K_{M-1} + c_{M}EG(0,T_{t}^{M}) - (c_{M}EG(B,T_{t}^{M}) - c_{M-1}B).$$
(15)

By assumption, the right-hand side of (15) is decreasing in *B*. Also,

$$V_{M-1}^{c}(0,t) - V_{M-1}^{n}(0,t) = K_{M-1} > 0.$$

Hence there is a unique $F_{M-1}(t)$ such that (15) equals zero at $B = F_{M-1}(t)$. This concludes the proof.

LEMMA A.2 $V_m^c(B,t) - V_m^n(B,t)$ is strictly decreasing in B.

PROOF. We prove the result by induction. From the proof of Lemma A.1, the result is true for m = M - 1. Suppose the result is true for m + 1. Note that $V_{m+1}^c(0,t) - V_{m+1}^n(0,t) = K_{m+1} > 0$. Hence, the induction hypothesis would imply that there is a unique threshold $F_{m-1}(t)$ such that

$$V_{m+1}(B,t) = \begin{cases} V_{m+1}^{n}(B,t) & \text{if } B < F_{m+1}(t), \\ V_{m+1}^{c}(B,t) & \text{if } B \geqslant F_{m+1}(t). \end{cases}$$

Now we consider the cost function for the *m*th release. If coordination is carried out, the optimal cost is

$$V_m^c(B,t)K_m + c_mB + EV_{m+1}[G(0,T_t^{m+1}),t+T_t^{m+1}].$$

If no coordination is carried out, there are two cases to consider. Denote

$$\tilde{F}_{m+1}(t) = \max\{F_{m+1}(t+\tau) : \tau \in S_{T_{t}^{m+1}}\},$$

where $S_{T_t^{m+1}}$ is the support of T_t^{m+1} .

Case 1: If $B < \tilde{F}_{m+1}(t)$, then there is a nonempty set $T = \{T | G(B,T) < F_{m+1}(t+T)\}$. Also define $\tilde{T} = \{T | G(B,T) \geqslant F_{m+1}(t+T)\}$. Thus, the optimal cost function is given by

$$V_{m}^{n}(B,t) = \int_{T} V_{m+1}^{n}[G(B,T),t+T]d\Phi_{t}^{m+1}(T) + \int_{T} V_{m+1}^{c}[G(B,T),t+T]d\Phi_{t}^{m+1}(T).$$
 (16)

By induction hypothesis, we have

$$\frac{\partial V_{m+1}^n(B,t)}{\partial B} > \frac{\partial V_{m+1}^c(B,t)}{\partial B} = c_{m+1}.$$

Hence

$$\begin{split} &\frac{\partial V_m^n(B,t)}{\partial B} \\ &= \int_{\mathcal{T}} \frac{\partial V_{m+1}^n[G(B,T),t+T]}{\partial G} \frac{\partial G(B,T)}{\partial B} d\Phi_t^{m+1}(T) \\ &+ \int_{\tilde{\mathcal{T}}} \frac{\partial V_{m+1}^c[G(B,T),t+T]}{\partial G} \frac{\partial G(B,T)}{\partial B} d\Phi_t^{m+1}(T) \\ &> \int_0^\infty c_{m+1} \frac{\partial G(B,T)}{\partial B} d\Phi_t^{m+1}(T) > c_{m+1}. \end{split}$$

Case 2: If $B \geqslant \tilde{F}_{m+1}$, then the coordination is carried out for sure at the (m+1)st release. The optimal cost function for not coordinating is

$$V_m^n(B,t) = \int_0^\infty V_{m+1}^c[G(B,T),t+T]d\Phi_t^{m+1}(T). \quad (17)$$

Then

$$\frac{\partial V_m^n(B,t)}{\partial B} = \int_0^\infty c_{m+1} \frac{\partial G(B,T)}{\partial B} d\Phi_t^{m+1}(T) > c_{m+1}.$$

Combine the two cases, we have

$$\frac{\partial V_m^c(B,t)}{\partial B} - \frac{\partial V_m^n(B,t)}{\partial B} < c_m - c_{m+1} < 0.$$

Hence, we conclude the lemma together with the fact that $V_m^c(0,t) - V_m^n(0,t) = K_m$.

PROOFOF THEOREM 2.1. Follows directly from Lemma A.2. \Box

PROOFOF PROPOSITION 2.2. We first note that $G(B,T) = B + (B+k_c)(e^{\beta T}-1)$ is linear in B. Also $EG(B,T) = B + (B+k_c)(q_t^m-1)$. Substituting it into (13), we obtain

$$V_{M-1}(B,t) = \begin{cases} K_M + K_{M-1} + c_{M-1}B & \text{if } B \geqslant F_{M-1}(t), \\ +c_M(q_t^{M-1} - 1)k_c \\ K_M + c_M q_t^{M-1}B & \text{if } B < F_{M-1}(t). \end{cases}$$
(18)
$$+c_M(q_t^{M-1} - 1)k_c$$

Since $q_t^m = Ee^{\beta T_t^{m+1}} > 1$, we deduce that $V_{M-1}(B, t)$ is concave in B. Note also $F_{M-1}(t) = K_{M-1}/(c_M q_t^{M-1} - c_{M-1})$.

Now suppose that $V_{m+1}(B)$ is concave in B. Then, for $0 \le \theta \le 1$, we have

$$\begin{split} &\theta V_{m}^{n}(B_{1},t)+(1-\theta)V_{m}^{n}(B_{2},t)\\ &=\theta E\left[V_{m+1}\left(G(B_{1},T_{t}^{m+1}),t+T_{t}^{m+1}\right)\right]\\ &+(1-\theta)E\left[V_{m+1}\left(G(B_{2},T_{t}^{m+1}),t+T_{t}^{m+1}\right)\right]\\ &\leqslant E[V_{m+1}(\theta G(B_{1},T_{t}^{m+1})\\ &+(1-\theta)G(B_{2},T_{t}^{m+1}),t+T_{t}^{m+1})]\\ &=V_{m+1}^{n}\left(\theta B_{1}+(1-\theta)B_{2},t+T_{t}^{m+1}\right). \end{split}$$

Since $V_m^c(B,t)$ is linear, we conclude that $V_m(B,t)$ is concave in B.

To show $V_m^n(B,t)$ is smooth, we only need to show that $\partial V^n/\partial B|_{B\to \tilde{F}^-}=q_t^m$. This is established by differentiating (16) with respect to B.

PROOFPROPOSITION 2.3. Let $B^0=0$ and $B^k=\sum_{j=1}^k \alpha_j \delta$ be the kth break point on g(t). Also write $T=n\delta+\xi$, where n is a nonnegative integer and $0\leqslant \xi<\delta$. Define $B^k_\delta=B^k-\alpha_k \xi$. Then

$$G(B^k, T) = B^{k+n} + \alpha_{k+n+1}\xi$$

 $G(B^k_{\delta}, T) = B^{k+n}.$

Note that G(B,T) is piecewise linear in B with the break points $\{B^0,B^1_{\delta},B^1,B^2_{\delta},....\}$. We examine the

slopes of consecutive pieces of G(B, T):

$$\frac{G(B^{k}, T) - G(B_{\delta}^{k}, T)}{B^{k} - B_{\delta}^{k}}$$

$$= \frac{B^{k+n} + \alpha_{k+n+1}T - B^{k+n}}{B^{k} - B^{k} + \alpha_{k+1}T}$$

$$= \frac{\alpha_{k+n+1}}{\alpha_{k+1}}$$

and

$$\frac{G(B_{\delta}^{k}, T) - G(B^{k-1}, T)}{B_{\delta}^{k} - B^{k-1}}$$

$$= \frac{B^{k+n} - B^{k+n-1} - \alpha_{k+n}T}{B^{k} - \alpha_{k}T - B^{k-1}}$$

$$= \frac{\alpha_{k+n}}{\alpha_{k}}.$$

Clearly, the slopes of $G(B^k, T)$ is monotone increasing (decreasing) if α_{k+1}/α_k is monotone increasing (decreasing). Note also that T is arbitrary. Hence, we conclude the proof.

PROOFOF PROPOSITION 2.4. It follows from an inductive argument and the fact that the composition of an increasing concave function to a concave function is concave.

PROOFOF THEOREM 2.2. We prove the result for the case when $G_m^i(B,T)$ is differentiable in B. At the mth release, define $\tau(\bar{B})$ to be the solution of (10).

After T_t^{m+1} time units, the (m+1)st module is released, and the effective fault level becomes

$$\bar{G}_{m+1}(\bar{B}, T_t^{m+1}) = \sum_{i=1}^k \alpha_{m+1}^i G^i(0, \tau(\bar{B}) + T_t^{m+1}).$$

The function $\bar{G}_{m+1}(\bar{B}, T_t^{m+1})$ represents the effective fault level at the (m+1)st release given that the effective fault level at the mth release is \bar{B} . Note that the growth of the effective fault level depends on the release index m due to its dependence on c_m^i .

From the proof of Theorem 2.1, the optimality of a threshold policy can be established if we show that

$$\bar{c}_{m+1}E\frac{\partial \bar{G}_{m+1}(\bar{B},T_t^{m+1})}{d\bar{B}}-\bar{c}_m>0.$$

Differentiating (10) with respect to \bar{B} and solving for $d\tau/d\bar{B}$, we obtain

$$\frac{d\tau}{d\bar{B}} = \frac{1}{\sum_{i=1}^{k} \alpha_m^i \frac{\partial G^i(0,\tau)}{\partial \tau}} = \frac{\bar{c}_m}{\sum_{i=1}^{k} c_m^i \frac{\partial G^i(0,\tau)}{\partial \tau}}.$$

Also, since $G^i(B,T) - B$ increases in B, it follows directly that $\partial G^i(0,\tau)/\partial \tau$ increases in τ . Hence, we have

$$\bar{c}_{m+1}E \frac{\partial \bar{G}_{m+1}(\bar{B}, T_t^{m+1})}{\partial \bar{B}}$$

$$= \bar{c}_{m+1}E \frac{\partial \sum_{i=1}^k \alpha_{m+1}^i G^i(0, \tau(\bar{B}) + T_t^{m+1})}{\partial \bar{B}}$$

$$= \sum_{i=1}^k E \frac{\partial c_{m+1}^i G^i(0, s)}{\partial s} \bigg|_{s=\tau(\bar{B}) + T_t^{m+1}}$$

$$\cdot \frac{\bar{c}_m}{\sum_{i=1}^k c_m^i \frac{\partial G^i(0, \tau)}{\partial \tau} \bigg|_{\tau=\tau(\bar{B})}}$$

$$> \bar{c}_m.$$

Thus, we conclude the proof.

PROOFOF PROPOSITION 3.1. From Lemma A.1, the threshold F_{M-1} satisfies

$$c[EG(B,T) - B] = K + CEG(0,T).$$

At the *m*th release, suppose $F_m > F_{M-1}$. Then we have

$$\begin{split} V_m^c(F_{M-1}) - V_m^n(F_{M-1}) \\ &= K + cF_{M-1} + V_m(0) \\ &- [K + cEG(F_{M-1}, T) + V_{m+1}(0)] \\ &= V_m(0) - c[EG(F_{M-1}, T) - F_{M-1}] - V_{m+1}(0) \\ &= V_m(0) - [K + cEG(0, T) + V_{m+1}(0)] \\ &\leq 0. \end{split}$$

which indicates that coordination should be carried out at $B = F_{M-1}$. Thus, we have a contradiction, which proves the lemma.

PROOFOF PROPOSITION 3.2. In the reverse-time setting, let $W_l(B) = V_m(B) - V_m(0)$ with $V_m(\cdot)$ defined in (5), (7) and (8). Then

$$W_{l+1}(B) = \min \{EW_l^n(G(B,T)), K+cB\}, (19)$$

and

$$\begin{split} W_{l}^{n}(B) &= \int_{0}^{T_{l-1}(B)} W_{l-1}^{n}\left(G(B,T)\right) d\Phi(T) \\ &- \int_{0}^{T_{l-1}(0)} W_{l-1}^{n}\left(G(0,T)\right) d\Phi(t) \\ &+ \int_{T_{l-1}(B)}^{\infty} [K + cG(B,T)] d\Phi(T) \\ &- \int_{T_{l-1}(0)}^{\infty} [K + cG(0,T)] d\Phi(T), \end{split}$$

where $T_l(B)$ solves $G(B, T_l) = f_l$ and f_l is the optimal threshold value in Theorem 2.1.

Clearly, if the value functions $W_l(\cdot)$ converge, then the threshold values must also converge. Thus, we try

to show that $W_l^n(\cdot)$ converges in l, which, in turn implies the convergence of $W_l(\cdot)$.

Let S denote the collection of all the value functions W_l^n , l>2, in the dynamic system. We first note that every element in S is continuously differentiable. It follows that S is *equicontinuous*. That is, for any $\delta>0$, there is a $\varepsilon>0$, such that $|w(x)-w(y)|<\delta$ for $y\in(x-\varepsilon,x+\varepsilon)$ and each $w\in S$. Clearly, S is *point-wise bounded*. That is, $w(x)\leqslant K+cx<\infty$ for each $x\in[0,\infty)$ and each $w\in S$. Thus, by the Arzela-Ascoli theorem(page 245 of Rudin 1987), there is a subsequence of $\{w_l^n\}$ that converges uniformly as $k_l\to\infty$. Hence, we conclude the proposition.

Proposition A.1 Suppose that the inter-release times are independent. Let P_m , $1 \le m \le M$, be the probability of coordinating at the mth release. Also, let $P_0 = 1$. Then $P_M = 1$ and

$$P_m = \sum_{i=0}^{m-1} P_{m|i} P_i (1 - P_{i+1|i}) \dots (1 - P_{m-1|i})$$
 (20)

for
$$1 \leqslant m \leqslant M - 1$$
, (21)

where

$$P_{m|i} = \int_{\frac{1}{\beta}ln}^{\infty} \frac{F_{m+k_c}}{k_c} d\Psi(t)$$
 (22)

and $\Psi = \Phi^i * ... * \Phi^m$ is the convolution of $\Phi^i,...,\Phi^m$.

PROOF. Let B_m be the number of faults at the end of the mth release. Also denote t_m as the stopping time to the mth release. Under the optimal threshold policy, the probability of coordinating at release 1 is given by

$$P_{1} = P\{B_{1} \geqslant F_{1}\} = P\{k_{c}(e^{\beta t_{1}} - 1) > F_{1}\}$$

$$= \int_{\frac{1}{\beta} \ln \frac{F_{1} + k_{c}}{k_{c}}}^{\infty} d\Phi^{1}(t).$$
(23)

If the last coordination is at the *i*th release, then the random variable $t_m - t_i$, i < m, has the distribution $\Phi^i * ... * \Phi^m$. Thus, the conditional probability of coordinating at the *m*th release is given by

$$\begin{split} & P_{m|i} \\ & = P\{B_m \geqslant F_m | B_i \geqslant F_i; B_k < F_k, i < k < m\} \\ & = P\{k_c(e^{\beta(t_m - t_i)} - 1) \geqslant F_m | B_i \geqslant F_i; B_k < F_k, i < k < m\} \\ & = \int_{\frac{1}{\beta} \ln \frac{F_m + k_c}{k_c}}^{\infty} d\Phi^i * \dots * \Phi^m(t). \end{split}$$

Using the conditioning rule, we have

$$\begin{split} &P\{B_{i} \geqslant F_{i}; B_{k} < F_{k}, i < k < m\} \\ &= P\{B_{m-1} < F_{m-1} | B_{i} \geqslant F_{i}; B_{k} < F_{k}, i < k < m-1\} \\ &\cdot P\{B_{i} \geqslant F_{i}; B_{k} < F_{k}, i < k < m-1\} \\ &= P\{B_{m-1} < F_{m-1} | B_{i} \geqslant F_{i}; B_{k} < F_{k}, i < k < m-1\} \\ &\dots P\{B_{i+1} < F_{i+1} | B_{i} \geqslant F_{i}\} P\{B_{i} \geqslant F_{i}\} \\ &= (1 - P_{m-1|i}) \dots (1 - P_{i+1|i}) P_{i}. \end{split}$$

Thus, we can calculate P_m by unconditioning to yield (20).

Appendix B. The Release-Based Policy.

Let B_m to be the number of faults when development has been continued without coordination for m releases. Denote C(m,k) as the coordination cost at the kth release when the last coordination is at the mth release. Then $C(m,k) = K + bk + cB_{k-m}$. Also define an array u[m] to be the optimal cost from the first coordination after the mth release to the end of the project and an array t[m] to be the index of the next coordination if we coordinate at the mth release. The algorithm proceeds as follows:

- 1 Initialize: u[M] = 0.
- 2 For m = M and $m \ge 0$,
 - 2.1 Set u[m] = C(m, m+1) + u[m+1] and t[m] = m+1.
 - 2.2 For k = m + 2 and k < M, if C(m, k) + u[k] < u[m], we set u[m] = C(m, k) + u[k] and t[m] = k.
 - 2.3 m = m + 1.

At the end of the algorithm, u[0] returns the total coordination cost.