Appendix: Proofs

Proof of Theorem 1:

By induction: Equation (5) establishes the base of the induction for n=0. Note that (4) is satisfied by the construction of A. Suppose that the hypothesis is true for all values less than k. From (7)

$$v_{k+1}'(t) = -a(t)\frac{(\varepsilon - 1)^{\varepsilon - 1}}{\varepsilon^{\varepsilon}} \left(v_{k+1}(t) - v_k(t)\right)^{1 - \varepsilon} = -a(t)\frac{(\varepsilon - 1)^{\varepsilon - 1}}{\varepsilon^{\varepsilon}} \left(v_{k+1}(t) - \beta_k(A(t))^{\frac{1}{\varepsilon}}\right)^{1 - \varepsilon}$$

This is a linear ordinary differential equation, so we need only verify that the solution holds:

$$v_{k+1}'(t) + a(t) \frac{(\varepsilon - 1)^{\varepsilon - 1}}{\varepsilon^{\varepsilon}} \left(v_{k+1}(t) - \beta_{k}(A(t))^{\frac{1}{\varepsilon}} \right)^{1 - \varepsilon}$$

$$= \beta_{k+1} \frac{1}{\varepsilon} (A(t))^{\frac{1}{\varepsilon} - 1} A'(t) + a(t) \frac{(\varepsilon - 1)^{\varepsilon - 1}}{\varepsilon^{\varepsilon}} \left(\beta_{k+1}(A(t))^{\frac{1}{\varepsilon}} - \beta_{k}(A(t))^{\frac{1}{\varepsilon}} \right)^{1 - \varepsilon}$$

$$= -\beta_{k+1} \frac{1}{\varepsilon} (A(t))^{\frac{1 - \varepsilon}{\varepsilon}} a(t) + a(t) \frac{(\varepsilon - 1)^{\varepsilon - 1}}{\varepsilon^{\varepsilon}} (\beta_{k+1} - \beta_{k})^{1 - \varepsilon} (A(t))^{\frac{1 - \varepsilon}{\varepsilon}}$$

$$= (A(t))^{\frac{1 - \varepsilon}{\varepsilon}} a(t) \left(-\beta_{k+1} \frac{1}{\varepsilon} + \frac{(\varepsilon - 1)^{\varepsilon - 1}}{\varepsilon^{\varepsilon}} (\beta_{k+1} - \beta_{k})^{1 - \varepsilon} \right) = 0,$$

which establishes the hypothesis at k+1 as desired.

Given the formula for v_n , the price posted satisfies

$$p_n(t) = \frac{\varepsilon}{\varepsilon - 1} (v_n(t) - v_{n-1}(t)) = \frac{\varepsilon}{\varepsilon - 1} A(t)^{\frac{1}{\varepsilon}} (\beta_n - \beta_{n-1}) = \beta_n^{-\frac{1}{\varepsilon} - 1} A(t)^{\frac{1}{\varepsilon}}$$
since $\beta_n - \beta_{n-1} = \frac{\varepsilon - 1}{\varepsilon} \beta_n^{-\frac{1}{\varepsilon} - 1}$. Q.E.D.

Proof of Theorem 2:

Define $\gamma_n = \frac{\beta_n}{\frac{\varepsilon - 1}{\varepsilon}}$. The theorem states that γ_n converges to 1. Using (8),

we have

$$\gamma_n n^{\frac{\varepsilon-1}{\varepsilon}} \left(\gamma_n n^{\frac{\varepsilon-1}{\varepsilon}} - \gamma_{n-1} (n-1)^{\frac{\varepsilon-1}{\varepsilon}} \right)^{\varepsilon-1} = \left(\frac{\varepsilon-1}{\varepsilon} \right)^{\varepsilon-1}$$

or

$$\gamma_n^{\frac{1}{\varepsilon-1}} n^{\frac{1}{\varepsilon}} \left(\gamma_n n^{\frac{\varepsilon-1}{\varepsilon}} - \gamma_{n-1} (n-1)^{\frac{\varepsilon-1}{\varepsilon}} \right) = \frac{\varepsilon-1}{\varepsilon}$$

or

$$\gamma_n^{\frac{1}{\varepsilon-1}} n \left(\gamma_n - \gamma_{n-1} \left(\frac{n-1}{n} \right)^{\frac{\varepsilon-1}{\varepsilon}} \right) = \frac{\varepsilon - 1}{\varepsilon}$$

Claim 1: $\gamma_n \leq 1$.

Proof of Claim 1: Note that $\gamma_1 = \beta_1 = \left(\frac{\varepsilon - 1}{\varepsilon}\right)^{\frac{\varepsilon - 1}{\varepsilon}} < 1$. Suppose, by way of contradiction, that γ_m is the first instance of $\gamma_m > 1$. Then $\gamma_m > 1 \ge \gamma_{m-1}$. Thus

$$\frac{\varepsilon - 1}{\varepsilon} = \gamma_m^{\frac{1}{\varepsilon - 1}} m \left(\gamma_m - \gamma_{m-1} \left(\frac{m - 1}{m} \right)^{\frac{\varepsilon - 1}{\varepsilon}} \right) \ge \gamma_m^{\frac{1}{\varepsilon - 1}} m \left(\gamma_m - \gamma_m \left(\frac{m - 1}{m} \right)^{\frac{\varepsilon - 1}{\varepsilon}} \right)$$

$$= \gamma_m^{\frac{\varepsilon}{\varepsilon-1}} m \left(1 - \left(\frac{m-1}{m} \right)^{\frac{\varepsilon-1}{\varepsilon}} \right) \geq \gamma_m^{\frac{\varepsilon}{\varepsilon-1}} \frac{\varepsilon-1}{\varepsilon},$$

since $m \left(1 - \left(\frac{m-1}{m}\right)^{\frac{\varepsilon-1}{\varepsilon}}\right)$ is a decreasing sequence that converges to $\frac{\varepsilon-1}{\varepsilon}$. This verifies claim

Now rewrite

$$\gamma_n^{\frac{1}{\varepsilon-1}} n \left(\gamma_n - \gamma_{n-1} \left(\frac{n-1}{n} \right)^{\frac{\varepsilon-1}{\varepsilon}} \right) = \frac{\varepsilon - 1}{\varepsilon}$$

to obtain

$$\gamma_n = \frac{\varepsilon - 1}{n\varepsilon} \gamma_n^{\frac{-1}{\varepsilon - 1}} + \gamma_{n-1} \left(\frac{n - 1}{n} \right)^{\frac{\varepsilon - 1}{\varepsilon}} \ge \frac{\varepsilon - 1}{n\varepsilon} + \gamma_{n-1} \left(\frac{n - 1}{n} \right)^{\frac{\varepsilon - 1}{\varepsilon}},$$

with the inequality implied by claim 1.

Equality in this expression defines a new sequence η_n which is a lower bound for γ_n .

$$\eta_n = \frac{\varepsilon - 1}{n\varepsilon} + \eta_{n-1} \left(\frac{n - 1}{n} \right)^{\frac{\varepsilon - 1}{\varepsilon}}.$$

It is readily verified by induction that

$$\eta_n = \left(\frac{1}{n}\right)^{\frac{\varepsilon-1}{\varepsilon}}\eta_0 + \frac{\varepsilon-1}{\varepsilon}\sum_{j=1}^n \frac{1}{j}\left(\frac{j}{n}\right)^{\frac{\varepsilon-1}{\varepsilon}}$$

$$= \left(\frac{1}{n}\right)^{\frac{\varepsilon-1}{\varepsilon}} \eta_0 + \frac{\varepsilon-1}{\varepsilon} \frac{1}{n} \sum_{j=1}^n \left(\frac{j}{n}\right)^{\frac{-1}{\varepsilon}} \to \frac{\varepsilon-1}{\varepsilon} \int_0^{1-\varepsilon} x^{-1/\varepsilon} dx = 1.$$

Thus, γ_n is bounded between η_n and 1 and thus converges to 1.

From (9):
$$p_n(t) = \beta_n^{\frac{-1}{\varepsilon-1}} (A(t))^{\frac{1}{\varepsilon}} \approx \left(\frac{A(t)}{n}\right)^{\frac{1}{\varepsilon}}$$
.

The evolution of the probability that there are n items available at time t is governed by the differential equation

$$\begin{split} q_{n}'(t) &= \lambda(p_{n+1}(t), t)q_{n+1}(t) - \lambda(p_{n}(t), t)q_{n}(t) \\ &= a(t)(p_{n+1}(t))^{-\varepsilon}q_{n+1}(t) - a(t)(p_{n}(t))^{-\varepsilon}q_{n}(t) \\ &= a(t) \left(\beta_{n+1}^{\varepsilon/-1}A(t)^{-1}q_{n+1}(t) - \beta_{n}^{\varepsilon/-1}A(t)^{-1}q_{n}(t)\right) \\ &= \frac{a(t)}{A(t)} \left(\beta_{n+1}^{\varepsilon/-1}q_{n+1}(t) - \beta_{n}^{\varepsilon/-1}q_{n}(t)\right) \end{split}$$

because q_n increases when a sale is made starting with n+1 items, and is decreased when a sale is made when n items remain. If the firm begins with N units at time 0, then q(N,0)=1 and q(n,0)=0 for all n< N.

Using the approximation, this becomes

$$q_n'(t) \approx \frac{a(t)}{A(t)} ((n+1)q_{n+1}(t) - nq_n(t)),$$

which has the elegant binomial solution:

$$q_n(t) \approx {N \choose n} \left(\frac{A(t)}{A(0)}\right)^n \left(1 - \frac{A(t)}{A(0)}\right)^{N-n}.$$

Q.E.D.

Proof of Theorem 4:

The expected value of the amount of remaining capacity, n is approximately $n \approx \frac{NA(t)}{A(0)}$. Inequality (17) is equivalent to this holding for all t, but it is more convenient to express it in

terms of n, with $A(t) \approx \frac{nA(0)}{N}$. Then (17) can be expressed as $\frac{n-1}{n} \left(1 + \frac{N}{\epsilon nA(0)}\right)^{\epsilon} \le 1$.

Let
$$\kappa(x) = (1-x)\left(1 + \frac{N}{\varepsilon A(0)}x\right)^{\varepsilon}$$
; It is sufficient to prove that $\kappa\left(\frac{1}{n}\right) \le 1$ for all n in $[1,N]$.

$$\kappa'(x) = -\left(1 + \frac{N}{\varepsilon A(o)}x\right)^{\varepsilon} + (1 - x)\left(1 + \frac{N}{\varepsilon A(o)}x\right)^{\varepsilon-1} \frac{N}{A(o)}$$

$$= \left(1 + \frac{N}{\varepsilon A(o)}x\right)^{\varepsilon-1} \left[-\left(1 + \frac{N}{\varepsilon A(o)}x\right) + (1 - x)\frac{N}{A(o)}\right]$$

$$= \left(1 + \frac{N}{\varepsilon A(o)}x\right)^{\varepsilon-1} \left[\frac{N}{A(o)} - 1 - x\frac{N}{A(o)}\left(1 + \frac{1}{\varepsilon}\right)\right]$$

$$= \frac{1}{A(o)}\left(1 + \frac{N}{\varepsilon A(o)}x\right)^{\varepsilon-1} \left[N - A(o) - Nx\left(1 + \frac{1}{\varepsilon}\right)\right]$$

$$\leq \frac{1}{A(o)}\left(1 + \frac{N}{\varepsilon A(o)}x\right)^{\varepsilon-1} \left[N - A(o) - \left(1 + \frac{1}{\varepsilon}\right)\right] \leq o.$$
Thus,
$$\kappa\left(\frac{1}{n}\right) \leq \kappa\left(\frac{1}{N}\right) = \left(1 - \frac{1}{N}\right)\left(1 + \frac{1}{\varepsilon A(o)}\right)^{\varepsilon} \leq \left(1 - \frac{1}{A(o)}\right)\left(1 + \frac{1}{\varepsilon A(o)}\right)^{\varepsilon} \leq 1.$$

The first inequality follows from $n \le N$ and the fact that κ was shown to be decreasing; the second inequality from the hypothesis of the theorem that $N \le A(0)$, and the third inequality by noting that $\left(1-z\right)\left(1+\frac{z}{\varepsilon}\right)^{\varepsilon}$ is a decreasing function of z, and thus maximized at z=0, so that $\left(1-z\right)\left(1+\frac{z}{\varepsilon}\right)^{\varepsilon} \le 1$. Q.E.D.