Appendix: Proofs

Proof of Theorem 1:

By induction: Equation (5) establishes the base of the induction for n=0. Notethat (4) is

satisfied by the construction of A. Suppose that the hypothesisistrue for all values less than k.
From (7)
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Thisisalinear ordinary differential equation, so we need only verify that the solution holds:
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which establishes the hypothesis at k+1 as desired.

Given the formulafor vy, the price posted satisfies
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since B,, — By :%Bn &1, Q.E.D.
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Proof of Theorem 2:

Bn

Define v, = The theorem states that vy, convergesto 1. Using (8),
ne
we have
el e e\
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Claim 1: y.<1.
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Proof of Claim 1: Note that y; =B, = (:j ® <1. Suppose, by way of contradiction, that Ym
€

isthefirst instance of y»>1. Then y>1>ymn1. Thus
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€-1

. m-1
since m 1—(—

e | . e—-1 : - .
j ® | isadecreasing sequence that convergesto —— . This verifiesclaim
m €

1.
Now rewrite

R &1

£-1 n-1) ¢ €—1

Yn M Yn —Yna =
n €
to obtain
-1 €1 €1
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with the inequality implied by claim 1.

Equality in this expression defines a new sequence n, which isalower bound for vy,.

€-1 n = 1
T _ y \ € _ -1
:He e T (4) SEL Hedx 1.
n € n4« n €
J=1 0]
Thus, v, is bounded between 1, and 1 and thus convergesto 1.

From (9): py (1) =B5 (A(D)'* = [%}/ .

14



The evolution of the probability that there are n items available at timet is governed by the
differential equation

I ) = APy (O, D1 () = APy (0),)g ()

= a()(Pr () G O —a®) (P, ) g, ()

€

=af(t )[BniIIA(t)_l I () = BEHAU ) gt )J

3 g
= %[Béflchﬂ () - Bré_IQn (t)J

because g, increases when a sale is made starting with n+1 items, and is decreased when asaleis
made when n itemsremain. If the firm begins with N units at time 0O, then q(N,0)=1 and q(n,0)=0
for al n<N.

Using the approximation, this becomes

gn ()= %«n D (- ngp (1)),

which has the elegant binomial solution:

_(NY A0 Y'(,_ Ao
q"(”N[nIA(o)] (1 A(o)j '

Q.E.D.

Proof of Theorem 4.

NA(t)
A(0)
Inequality (17) is equivalent to this holding for al t, but it is more convenient to expressit in

nA(o)
N

The expected value of the amount of remaining capacity, n is approximately n =

€
terms of n, with A(t) = . Then (17) can be expressed as n—1(1+ N jSl.

n enA(o)

N . .
Let x(x)=(1—x) 1+ - It is sufficient to provethat |1/ |<1 foral nin[1,N].
(0= x)( EA(O)xj p /) [LN]
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N Y'Y N
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s {17 )< {1y )= - AVI eA(O)j (s /4(0))( aA(o)j£<

The first inequality follows from n<N and the fact that k was shown to be decreasing; the second
inequality from the hypothesis of the theorem that N<A(0), and the third inequality by noting that

€
(1- z)(l + Ej is adecreasing function of z, and thus maximized at z=0, so that
€

€
Z
1-z)1+=| <1.
e

Q.ED.
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