
9 Appendix: Proofs

Proof of Theorem 1. i. According to Lemma 14 in Zhao and Atkins (2007), we need to

show ( ) = ( )( ) + ( ) [min{ }] to be quasiconcave

in

( ) = + ( ) + [min{ }] ( ) Pr( )

2 ( )
2 =

2

2 +Pr( )[ 2 2( ) ( )]

If 0 then ( ) is strictly concave in done.

If 0 then let = 0 According to ( ), 2 2 0 and is decreasing in If

[2 ( ) ( + )] 0 then ( ) is strictly concave in done. Otherwise, by ( ),

[2 ( ) ( + )] decreases as increases from to max. Hence 2 ( ) 2

either changes sign at most once from positive to negative or is always negative. Thus,

whenever ( ) turns negative, it remains negative, and ( ) is quasiconcave in

So, function (1) is quasiconcave in ( ) and a pure-strategy Nash equilibrium exists.

ii. We first show that maxima of function (1) are interior, then that equations (2)-(3)

have a unique solution.

Note that lim max 0 lim max = ( ) 0 lim

0 and lim 0 = 0 So boundary solutions are not optimal. Next we

show that a unique maximizer solves (2)-(3), satisfying ( ) = 2 2 + Pr(

) [( ) ( )] 0

4Proved in Zhao and Atkins (2007), a bivariate function ( 1 2) is jointly quasiconcave in two variables
i every “vertical slice” of the function is quasiconcave, or more formally, i ( 1 2) is quasiconcave given

1 + 2 = for any real values and
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Uniquely solve ( ) from (3) and substitute into (2), resulting in

+ [min{ ( )}] = 0 (A1)

Define ( ) = + [min{ ( )}] where ( ) 0 and ( max) 0, and

( ) = ( )

Note that the last term of ( ) decreases with and approaches zero by ( ). Also, if

( ) holds, then 2 ( ) 2 0 so ( ) decreases with and approaches 2 2 as

goes to max. Thus ( ) is strictly concave, starts positive, and finally strictly decreases to

negative. So there is a unique solution for equation (A1), at ( ) 0

Proof of Proposition 1. Redefine retailer ’s strategy space as e = and e =

It can be shown that 2 0 2 e = 0 2 e = 0 2 e 0

and 2 e = 0 So is supermodular in ( ) and has increasing di erence in ( e ),

( e ) ( e ) and ( e ). Similarly we show the supermodularity and increasing di erence

of According to Milgrom and Roberts (1990), Theorem 4, the game is supermodular, and

a pure Nash equilibrium exists (Topkis 1998, Theorem 4.2.1).

Proof of Theorem 2. A su cient condition (Contraction Mapping Theorem 3.4, Fried-

man 1990) requires | 2

2 |
P

6= (|
2 | + | 2 |) + | 2 | and | 2

2 |
P

6= (|
2 | +

| 2 |) + | 2 | for uniqueness, which are
2

2

P
6= |

2 |+Pr( ) +
P

6= Pr( )

1 1 [( ) ] +
P

6= | ( ) Pr( ) ( )

The required results is obtained by

(i) 1 [( ) ] 1 [( ) ]
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(ii) | ( ) Pr( ) ( ) 1 and

(iii) Pr( ) +
P

6= Pr( ) max{1 P 6= }.

Proof of Proposition 2. An immediate result from Theorem 1 is that there exists a

symmetric equilibrium for the game (Cachon and Netessine 2004). Now we show that given

= = and = = and a symmetric demand and cost function, there exists a

unique symmetric equilibrium. That is, the solution from (2) and (3) under symmetry,

( ) + ( )Pr( ) = 0 and (A2)

2 2 + [min{ }] = 0 (A3)

is unique. Define ( ) = 2 2 + min{ ( )}, where ( ) is the unique solu-

tion of equation ( 2) Now ( ) 0 and ( max) 0. Also ( ) = 2 2 +

P
6=

2 + ( ) 0( ) where ( ) = [min{ }] and 0( ) = ( )

First, we show that ( ) 0 and decreases in Then we show that 0( ) 0 and

decreases in Then ( ) can be either always negative, or start positive but decrease

to negative and stay negative. Then there is a unique that solves ( ) = 0, at ( ) 0

Thus a unique symmetric equilibrium exists.

Using a methodology introduced by Netessine and Rudi (2003) for di erentiation, we

have ( ) = [min{ }] = Pr( ) ( 1) Pr( )

Pr( ) Pr( ) Pr( ) Pr( ) 0

Also note that [min{ }] = [min{ }]+ min[{( )+ ( 1) ( )+}] So

( ) = ( [min{ }] + min[{( )+ ( 1) ( )+}])

= Pr( )+Pr( ( 1) ( ) ) ( 1) Pr( +( ) (
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1) ) which decreases with

From ( 2) 0( ) = Pr( ) ( )( Pr( ) ) = 1 ( ) ( ) which

decreases in under the IFR assumption for and the fact that stochastically decreases

with

Proof of Theorem 3. Given ( ) the unique best response of retailer will be

( ) if functions (2)-(3) are equivalent to (4)-(5). Thus, =
P

6= ( )
( )
( )

( )
( )

and = [ Pr( )] Pr( ) = ( ) Pr( ) This approach

has been justified by Winter (1993), Cachon (1999), and Tsay and Agrawal (2000). It can be

shown that and = +( ( )+ [min( )) [
( )
( ) Pr( )]

Next, we prove that ( ) is a Pareto-dominant equilibrium for the whole game.

Assume there is another equilibrium ( ) that Pareto-dominates ( ) Then at

( ), at least one player gets better o without making any other player worse o than

at ( ). But this is not possible since at ( ) the total supply chain’s profit is no less

than that at ( ) If one player is better o at ( ) there must be at least one player

getting worse o at ( ) So ( ) is a Pareto-dominant equilibrium.

Assume that the optimum for the system is the unique. If the payo s are transferrable

among players, then similar reasoning shows that it is the unique Pareto-dominant equilib-

rium.

Proof of Proposition 3. With price competition only, = ( ) Pr(

) = ( + ) Pr( ) 0 With inventory competition only, = and =

P
6= Pr( ) Pr( ) 0

Proof of Proposition 4.

(i) To simplify the presentation, let = [min{ }]. Then = Pr( )
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and = Pr( ) We first show that at a symmetric equilibrium

(solution of ( 2) and ( 3)), we have

2

2 +
P
6=

2

( +
P
6=

)
( )( 2 2+

P
6=

2 )
0

Following Theorem 1, the symmetric equilibrium price is solved by equation ( 1). That

is, ( ) = + [min{ ( )}] = 0 where ( ) is the solution to equation (3) after

setting = for all . As in part ii of the proof of Theorem 1, the solution to ( ) = 0

must occur when ( ) 0 Note that

( ) =
2

2 +
P
6=

2

+ ( +
P
6=

)

where =
( )( 2 2+

P
6=

2 )
is derived from equation (3). Hence this inter-

mediate result.

The main result can now be derived. Di erentiating (2) and (3) with respect to we

have

(
2

2 +
P
6=

2

) + ( +
P
6=

) = 0 and

+ ( )(
2

2 +
P
6=

2
) = (1 )

Using Cramer’s rule, we have

=

¯̄
¯̄
¯̄
¯̄
¯

0 ( +
P
6=

)

(1 ) ( )(
2

2 +
P
6=

2

)

¯̄
¯̄
¯̄
¯̄
¯

¯̄
¯̄
¯̄
¯̄
¯

(
2

2 +
P
6=

2

) ( +
P
6=

)

( )(
2

2 +
P
6=

2

)

¯̄
¯̄
¯̄
¯̄
¯

=

¯̄
¯̄
¯̄
¯̄
¯

(
2

2 +
P
6=

2

) 0

(1 )

¯̄
¯̄
¯̄
¯̄
¯

¯̄
¯̄
¯̄
¯̄
¯

(
2

2 +
P
6=

2

) ( +
P
6=

)

( )(
2

2 +
P
6=

2
)

¯̄
¯̄
¯̄
¯̄
¯

Note that
2

2 +
P
6=

2

0 (Vives 1999) 0 1 0
2

2 0 0

2
0 in addition, +

P
6=

0 Then 0 and 0.

(ii) Di erentiating (2) and (3) with respect to we have
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(
2

2 +
P
6=

2

) + ( +
P
6=

) =
2

and

+ ( )(
2

2 +
P
6=

2

) = 1

Note that
2

0 It can be shown that the only combination that cannot hold is

0 and 0.

Proof of Proposition 5. With linear demand, = +
P

6= ( ) ( + ), since

is una ected by 0 By equation (9), 0

Proof of Proposition 6. Substituting ( ) and ( ) into function (1), we have

= ( )[ ( ) Pr( ) Pr( ) + [min{ }] Pr( )]

Notice that = ( )[ ( ) ( ) + [min{ }] ( )]

By equations (4)-(5), we have

( ) = Pr( ) Pr( ) and

( ) = 1 Pr( )

Then = ( ) ( ) = [ +
P

6= ( )
( )
( )

( )
( )] ( )

= 1 +
P

6=
( )
( )

( )
( ) = 1 ( 1) ( + )

The second equality holds because = in a symmetric game, and the last

equality holds for the linear demand function.

36




