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9 Appendix: Proofs

Proof of Theorem 1. i. According to Lemma 1* in Zhao and Atkins (2007), we need to
show m;(p;) =% 7¢ — (w; — B;)(k — mp;) + (p; — B;) E[min{ D¢, k — mp;}] to be quasiconcave
in Di-

i \Pi nd : s s
dwéz(fz) — ‘(lipz + (w; — B;)m + Elmin{ D, k — mp;}] — m(p; — B;) Pr(Di > k — mp;)

d?7;(pi) _ d27r;.i
dp% dp%

+Pr(D; > k —mp;)[—2m — m?(p; — B;)rp; (k — mp;)]

If m > 0, then 7;(p;) is strictly concave in p;, done.

If m < 0, then let n = —m > 0. According to (A), d?r¢/dp? < 0 and is decreasing in p;. If
2—n(pi — B;)7p: (k+np;)| <0, then 7;(p;) is strictly concave in p;, done. Otherwise, by (B),
2 — n(p; — B;)rps(k + np;)] decreases as p; increases from w; to p***. Hence d*m;(p;)/dp;
either changes sign at most once from positive to negative or is always negative. Thus,
whenever dr;(p;)/dp; turns negative, it remains negative, and 7;(p;) is quasiconcave in p;.
So, function (1) is quasiconcave in (p;,y;) and a pure-strategy Nash equilibrium exists.

ii. We first show that maxima of function (1) are interior, then that equations (2)-(3)
have a unique solution.

Note that lim,,, jmax drr;/dp; < 0, limy, _ymex dm; /dy; = —(w; — B;) < 0,1imy, ., dm;/dp; >
0, and lim,,_odm;/dy; = p; — w; > 0. So boundary solutions are not optimal. Next we

show that a unique maximizer solves (2)-(3), satisfying Q(p;) =%/ 9*r¢/op? + Pr(D; >

vi)/[(pi — ﬁi)TD;‘ (y;)] < 0.

4Proved in Zhao and Atkins (2007), a bivariate function g(x1,x2) is jointly quasiconcave in two variables
iff every “vertical slice” of the function is quasiconcave, or more formally, iff g(x1,x2) is quasiconcave given
mx1 + x2 = k for any real values m and k.
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Uniquely solve y;(p;) from (3) and substitute into (2), resulting in

87?/8])1 + Emin{D;, y;(p;)}] =0 (A1)

Define J(p;) =%/ drd/dp; + E[min{Ds, y;(p;)}], where J(w;) > 0 and J(p**) < 0, and
dJ(pi)/dp; = Q(p:)-

Note that the last term of Q(p;) decreases with p; and approaches zero by (B). Also, if
(A) holds, then d*J(p;)/dp? < 0, so Q(p;) decreases with p; and approaches §?7?/0p? as p;
goes to pi"®*. Thus J(p;) is strictly concave, starts positive, and finally strictly decreases to
negative. So there is a unique solution for equation (A1), at Q(p;) <0

Proof of Proposition 1. Redefine retailer j’s strategy space as y; = —y; and p; = —p;.
It can be shown that 9?m;/0p;0y; > 0,0°m;/Op;Op; = 0, &*m;/Op;0y; = 0, 0*m; /Dy, 0y; > 0
and 02m; /0y;0p; = 0. So m; is supermodular in (p;, y;) and has increasing difference in (p;, p;),
(pi»j), (i, p;) and (y;,y;). Similarly we show the supermodularity and increasing difference
of m;. According to Milgrom and Roberts (1990), Theorem 4, the game is supermodular, and
a pure Nash equilibrium exists (Topkis 1998, Theorem 4.2.1).

Proof of Theorem 2. A sufficient condition (Contraction Mapping Theorem 3.4, Fried-

2, . 2, . 2 2.
man 1990) requires |8 7rZ| > Z]#Oaiig;j' + |a(zig;j ) + |£,2§; | and |8 7r1| > Z]¢2(|8zig;j| +

] azjg;j )+ | 82?3;; for uniqueness, which are
9%nd
_W%Z > Z‘];éz |8p op; | + PI‘(D;9 > yi) + Zj;é,i Vi PI‘(D;9 < Y, €5 > yj),
1> 1/[(pi = Bi)rps] + 255 Viid D3 les>u, (4i) Prle; > w;)/ fos (i)

The required results is obtained by

(1) 1/[(pi = Bo)rps] < 1/[(wi — B;)rpe],
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(i) fsle; >y, (yi) Prie; > y;)/ fps (yi) <1, and

(iii) Pr(D; > yi) + 3,75 Pr(Df <wi,e; > y;) <max{l,> v}

Proof of Proposition 2. An immediate result from Theorem 1 is that there exists a
symmetric equilibrium for the game (Cachon and Netessine 2004). Now we show that given
pi =p_; =pand y; =y_; =y and a symmetric demand and cost function, there exists a

unique symmetric equilibrium. That is, the solution from (2) and (3) under symmetry,

—(w —B)+ (p— B)Pr(D; > y) =0 and (A2)

0% /0p; + Elmin{D;, y}] =0, (A3)

is unique. Define J(p) =% 9*r¢/0p? + Emin{D;,y(p)}, where y(p) is the unique solu-
tion of equation (A2). Now J(w) > 0, and J(p™*>) < 0. Also dJ(p)/dp = 0*nd/Op? +
i 027 [0pidp;+ A(y)y (p), where A(y) =/ OE[min{ D, y}]/0y and y'(p) =/ dy(p)/dp.

First, we show that A(y) > 0 and decreases in y. Then we show that y'(p) > 0 and
decreases in y. Then dJ(p)/dp can be either always negative, or start positive but decrease
to negative and stay negative. Then there is a unique p that solves J(p) = 0, at d.J(p)/dp < 0.
Thus a unique symmetric equilibrium exists.

Using a methodology introduced by Netessine and Rudi (2003) for differentiation, we
have A(y) = 0E[min{ D}, y}|/0y = Pr(D; > y;) — (N — L)y Pr(D} <y, ¢; > y;)

> Pr(D} > yi) — Pr(D; < i, ¢ > y;) = Pr(Dj > y;) — Pr(e; > y;) 2 0.

Also note that Emin{D?, y}| = E[min{e;, y}|+ Emin[{(y —€)*, (N —1)y(e; —y)" }]. So

Aly) = (Elmin{er, y}] + Eminf{(y — )", (N — (e — )" })/0y

=Pr(e >y)+Pr(y—(N—1)v(ej—y) <& <y)—(N—=1)vPriy < e <y+(y—e)/(N—
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1)), which decreases with y.

From (A2), y/'(p) = Pr(D; > y)/(p — B)(OPr(D; > y)/0y) = 1/(p — B)rp;(y), which
decreases in y under the IFR assumption for D; and the fact that D; stochastically decreases
with y.

Proof of Theorem 3. Given (p°,,y°,), the unique best response of retailer i will be

c ,.C\ 3 : B : _ * Cc_ .. (1)_0> (7')—C>
(pf, yf) if functions (2)-(3) are equivalent to (4)-(5). Thus, w; = ¢;—> ., (p§—c;)L;” (p°)/L;" (p°)
and 7 = [w} — pi Pr(Dj > yf)]/ Pr(D; < i) = pi — (pi —wj)/ Pr(D; <;). This approach
has been justified by Winter (1993), Cachon (1999), and Tsay and Agrawal (2000). It can be
shown that ¢; < w; < pf, and 57 = p+(Ly(p*)+ Elmin(D;, y¢))/[ L (5) Pr(D; < )] < ;.

H H . . K .
Next, we prove that (p5, y¢) is a Pareto-dominant equilibrium for the whole game.
. “1e . % H . H H
Assume there is another equilibrium (p¢, y?) that Pareto-dominates (p¢, y¢). Then at
— —> . .
(p?,y?), at least one player gets better off without making any other player worse off than

H H . . . . H H . .

at (p¢, y$). But this is not possible since at (pS, 5 ), the total supply chain’s profit is no less
— — . — —
than that at (p?, y¢). If one player is better off at (p?, y¢), there must be at least one player
. ﬁ ﬁ ﬁ ﬁ . . K .
getting worse off at (p?, y¢). So (pf, y§) is a Pareto-dominant equilibrium.

Assume that the optimum for the system is the unique. If the payoffs are transferrable
among players, then similar reasoning shows that it is the unique Pareto-dominant equilib-
rium.

Proof of Proposition 3. With price competition only, 57 = pf — (pf — w})/ Pr(D; <
ys) = (—¢; + wf)/ Pr(D; < yf) > 0. With inventory competition only, w} = ¢; and 5] =
- Z#i D5V Pr(D;» < Y5, € > yf)/Pr(Dj- < yjc) < 0.

Proof of Proposition 4.

(i) To simplify the presentation, let H =%/ E[min{ D3, y;}]. Then 0H/dy; = Pr(D; > y;)

(2
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and 0H/0y; = —yPr(D; < y;,e; > y;). We first show that at a symmetric equilibrium
(solution of (A2) and (A3)), we have

9%md 9%md OH/D
o7 T 27; 9piOp; ( ;T Z 8ya) >
JFT

<0
(p—B)(92H/0y2+ ) 02 H/dy;dy;)
J#i

Following Theorem 1, the symmetric equilibrium price is solved by equation (A1). That
is, J(p) = 0n¢/0p; + E[min{D;,y(p)}] = 0, where y(p) is the solution to equation (3) after
setting y; = y for all . As in part ii of the proof of Theorem 1, the solution p to J(p) = 0

must occur when dJ(p)/dp < 0. Note that

dJ 27d
%: 2+Zap8p ( +Zay])

where % = — OH/0y; is derived from equation (3). Hence this inter-
P (0-B) (02 H/OyR+)_ 0 H/0y0y;)
i

mediate result.

The main result can now be derived. Differentiating (2) and (3) with respect to (5, we

have
827r‘i1 827T¢i1 d B
(ap§ +]Z#apiap)p +( +Z ) ~ =0 and
* ) .
g_ic«% (= B)(5 2+28§§;)y =—(1-4).

Using Cramer’s rule, we have

o | G+ S /<f§+;£i§i> G+

d

Cla-w e-a@pesEn) | B e-aGE SR
b |G 0| [GErRaE) G R

d

e e ® ooz
Note that %7 -t 2 apla;% < 0 (Vives 1999), 21 >0, 1 - 5% > 0, G <0, 51 <0,

ang <0, in addltlon aH - T Z ;> 0. Then dp*/dS > 0 and dy*/df3 > 0.

(ii) Differentiating (2) and (3) with respect to w, we have
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2. -d

s ¢ \d 9
(W?Jr;apg; Vi + (5 +Zayj) = —gpa and
JjF#

9H d d2H *
S+ (-5 +E Sarty; ) i

=1

Note that (,iigi > 0. It can be shown that the only combination that cannot hold is
dp*/dw < 0 and dy*/dw > 0.

Proof of Proposition 5. With linear demand, w; = ¢; + 3, ;(p§ — ¢;)0/(b + 0), since
p§ is unaffected by 0, dw; /df > 0. By equation (9), d3;/df > 0.

Proof of Proposition 6. Substituting (w}, 57) and (?, y_g) into function (1), we have

7 = (pf — wi)[Li(p%) — uf Prler > )/ Pr(e; < ) + Elmin{e;, 73]/ Pr(e; < v)].

Notice that ¢ = (pf — c:)[Li(p") — yiei/ (0 — i) + pf Efmin{es, y})/ (0 — ).

By equations (4)-(5), we have

¢i/ (p; — ¢i) = Pr(e: > yf)/ Pr(e; < yf) and

pi/ (1 — ¢i) = 1/ Pr(e; <j).

Then m;/m = (5§ — w?)/ (5 = &) = [ = ¢+ 205 — ) L (0°) /L7 ()] (05 — )

=14 L L)) /L () = 1= (n = 1)6/ (b + 6).

The second equality holds because pf — ¢; = pj — ¢; in a symmetric game, and the last

equality holds for the linear demand function.
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