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Appendix: Proofsof all results
Observation 2.1:
We first show that the two constraintsin (P) are satisfied if and only if A <Am

In the VM1 system, when the retailer announces arent p , the manufacturer picks the order

quantity Q¥ =,/2A,D/p and histota cost is J), =/2A,Dp . The corresponding cost of the

retailer is J; = S(p) , where (p) = \/;(A — An)\/B-f- H yAD . On the other hand, in the RMI

\2A, 20

system, the retailer’ s optimal order quantity is Q% = \/2A D/H and the corresponding costs of

. HD .
the retailer and the manufacturer are J5 = \/2ADH and J;; = A A respectively. We need

tofind arent p suchthat Jy, < J and J;: < J5. Note that the former can betrueif and only if

p< in: _ ' Now, if A <A,

« DH
Sp)=(A-A) aﬂ/ZADH <Jgq,
Thus, if A < A, we have shown that there exists arent parameter o~ that ensures that the VMI
system is better for both players.

Tofinish the proof, let A, > A,,. S(p) hasaunigue minimum at ;z HA, decreasing

when ;) > p and increasing when ;; < p. Wefinish the proof by noting that S(p*) > JF when A,

<Apand p=p*.



To solve (P), we thus focus on the case when Ar < An In this case, notethat S(p) isadecreasing

function. Thus (P) issolved a p = p*. To show that this does not coordinate the channel, we

observethat p* = AA“X isthe unique rent that coordinates the channel.
_l’_

Lemma3.1 n(r) = j(g —1r)f(£)dé = j(.»g —1)pe % dE

Integrating by parts and canceling common terms, we get:

o0 o8] _aé
()= [ di—p frecas =L

(04
F(r)= [ f(&)de = [pecae =L —
r r a
So, n(r)=F(r)/e.

Lemma 3.2: Since the cost functions J&.(Q,r), Jy,(Q,r), and J3(Q,r) are quite similar, we
will look at a general cost function of the following form:

3(Q,r)= AD /Q+ (6Q+ pr)+[] f (xX)XIX]PD /Q

Since the sum of convex functionsis convex, to show that J(Q,r)isjointly convex, it sufficesto
show that b(Q,r) =[I f(X)dX]PD/Q isjointly convex in (Q,r).
r

Let H(Q, r) be the Hessian matrix of b(Q, r). To show convexity, we need to show
positive semi-definiteness of H. Since we have a 2x2 matrix, it is enough to show that the

determinant and the diagonal entries are positive. From the above expressionsit is clear that the



latter istrue. Now, WLOG, set PD = 1. Thelead timedemand is f (X) = fe ™, a >0 and for
ease of exposition and WLOG, ignore the constant term 5. We then have the following:

db 2% d%b -1 db
agz ) T G =g T Goar

Q—lzf (")

The diagonal terms of this Hessian H(Q, r) are again positive. Also, note that
Det(H (Q,r)) 2 0= = 2f'(NA-F (r)) [ f(r)]? = 2e** >e**" .

Thisimplies convexity.

Observation 3.1: Using equations (8) and (9) in section 3, we have

QY =£_1+1/1+2DAna2/p and ¥ =1 In FuDa/p :
o- a |1+.1+2DA 0%/ p

It isimmediate that in general, thereisno p such that QV= Q° and r¥ = r® simultaneously.

Theorem 3.1: (1) We will start with the case where a penalty isincurred for every stockout
occasion. We need to show that there existsarent p such that J5.(Q",r") < JZ(Q%,r%) . We

will demonstrate this by taking two cases.

Case 1: Let AwPm >A/P;. Consider arent p suchthatr'= r®=r. From (5) and (8), we have

Thisimpliesthat Q¥ > QR since A/P, > A/P,. We then have:

Je @) =[(A +A)+(R,+R)F(NID/Q" +HQ" /2-Hy
=[(A +A,)+ (P, +R)F(NID/Q" +DH[A, +PF (1)]/ ,Q"

IE Q1) =[(A + A+ (P, + P)E()ID/QF + HQR 12— Hy
“[(A + A)+ (P + P)F(D] o

vag +DR[A, + R,F(NI/RQ’

Taking the difference and canceling common terms, we have,
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ch(QV,r)—ch(QR,r):Q%{(l—'/j—?*)[(m A+ (P +P)F() = (AR /P, + E(N)P,)T}

Rearranging terms and canceling common ones, we have,

D ra- H—E,“)[A +A (- P/P,)+PEN]}

J\é;(Qvir)_‘]gj(Qer)sz 0 >

Note that the expressionin [.] is positive because P, < P,,,. Since our choice of rent implies that

QY ZQR:%zl,Wearedone.

r

Case 2: Let Aw/Pm < A/P:.

Consider arent p such that Q' = Q¥ = Q. As before, taking the difference and canceling

common terms, we have:

Jé(Q,rV)—JEC(Q,rRFg(PM e>F<rv>—8<pm+ PYFI)-H( -r7)

_ﬂ RP,D B RD P+PR, A_ﬂ
= i) RS D
_H, BA. AR A R
=M A AR A R T

Set P,/P, = yand A{A, = . Let G(X) = In(i) +5+ x—y-1.Wethen have
Xy

ch(Q,rV)—ch(Q,rRF%G(X)-

G(x) isaconvex function and has a unique minimum at x = y/(y+1) < 1. Further, G(y) = 0 and
PP, = y > 1. G(X) has another zero at some x* < y. Hence, it is easy to see that G(x) < 0 when x
€ [x*, y] and is positive everywhere else. By our assumption x <y. To finish the proof, we need
to ensurethat x > x*. Asyincreases, x* decreases. Wheny =1, we get x*= 0.203 and this
corresponds to A, = 4.9A,,. Hence, if A, <5A,,, we can ensure that G(x) < 0.

(2) Now consider the case where a penalty cost for a stockout isincurred for every unit

stocked out. In this case, the total cost of the supply chainis:
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Jo@Q.r)=(A+A)D/Q+H@Q/2+r—u)+ (P, +P)n(r)D/Q.
The only differencein the cost function is that we have n(r) instead of F(r). From Lemma,
n(r)=F (r)/a. Also, F(r) = e /a=f(r)/a. So, it can be shown easily that the only
difference in the proof for this case, relative to the earlier one, isthat we replace F(r) with n(r)

and f(r) with F (r). 0l
Theorem 4.1:

We analyze the case when the production rate is greater than D but finite. As mentioned in the
discussion following Theorem 4.1, the case of infinite production simply yields X=0in the

discussion below.

To prove (1) we need only produce apair (6, p) that resultsin channel coordination. For a given

pair (6, p), the manufacturer's optimal response (Q, r),when u > D satisfiesthe following pair of

equations:

Zggz—sﬁgﬁu)+e+X/2=o

D (A1)

f(r)+p=0

Let the centralized system or first best solution be (Q°, r°). It is clear that there is a unique pair
(6%, p*) that satisfies the pair of equations (A1), whenweset (Q, r) = (QC, rc). But we do not
claim that this solution can allocate fractions of the savings such that the participants do better
than in aRMI system. However, combined with side payments, the contract can allocate the first

best profit arbitrarily to the players.



To prove (2), we produce a (6, p) > 0 such that both players are better in the VMI system than in

the RMI system. We will represent the manufacturer’s optimal responsein the VM| system by

@QV,rY), which satisfies equation (A1) above.

Wewill denote by (QF, r™) the decisions made by the retailer in an RM| system. The player’s
costsin the VMI and RMI systems are denoted, as before, by J,,, Ji, Ji, and J,; . We need
to show that there exists a contract S; or equivalently apair (6, p) suchthat J/ —J " <0 and
J¥ —JR<0. First choose (6, p) >0 such that Q¥ = QR Note that the expression for QR isthe

same as when the production rate was infinite.

Using ( v)zZZD[An+PmF‘(rV)1 and p——PuF(8)
0+X/2 0+X12)Q""

we get

o _ (p+\/p2/Pj+8DAn9)
- 2(0 + X12) '

So, for any p> 0, there exists 6 > 0 such that Q' = QF = Q. Now, let
\ R PD = (. V = R \Y
V=3 -3 = TR - F IO+ X 12Q+ pr
Vv R PD — (Vv —/+R Vv R
Z=‘]R_‘JR=?[F(r )= F(r)]=(0Q+(p—H)r')—Hr

Using F(r)= f(r)/a, wehave Q" =QR = F(r®) =F;“—Hlf(rv) and writing Y as afunction of p:
rP

F(r")D P v R P
Y=Y(p)=%(;4—"— R+ 0+ X/12Q" + pr" -1 2%



HPPm) >0, and Y continuous for p > 0 implies that there existsa p > H

r

But Y(o0) > -0 and Y(

such that Y(o') < 0. But noticethat if Y<0and 6, p>0then F(rV)—F(r®)< 0. Thuswhen p=

p , we have Z< 0. Thisfinishesthe proof. [

Lemma 5.1: Part (1) of thelemmais straightforward, so we will prove part (2) of the lemma.,,
Without any loss of generality and for ease of exposition, we ignore the constant multiplier g in
the demand density function in the proof.

To show joint convexity, we need the positive definiteness of the Hessian.

Let the Hessian matrix be denoted by G(Q,T) =(gj); i,j =12.

i1 = a3J‘ yzef"‘yTedy; Oo2 = o 2Te QT 12 = G1 = aZQe—aQT :
Q

Clearly, the diagonal elements are positive. The determinant of the Hessian is given by the
following expression:

D(G)=a"Te " [ y?%e T dy -a*(Qe ")
Q

> o °Q2Te QT j e ™ dy— a* Qe Q")2=0.
Q
Thusthe Hessian is positive definite.
Theorem 5.1: Thetotal supply chain cost of the system as afunction of (s, T) isgiven by:

de(s) = BEA) s P (BB T gy 1y

T s+DT

This total system cost function will be used to compare the two systems, VM| and RMI, though
the values of (s, T) would be different in the two cases. From Lemma 5.1, we have convexity of

the cost function. Convexity of the cost function implies that the optimal decisions can be
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obtained by solving simultaneously the two first order conditions. Again, without any loss of
generality, we ignore the constant multiplier # in the demand density function for ease of
exposition. So, we have:

Ao H

M 0@ e—aT (s+DT) = (A2)
ds Pa

dJe. D . 1,  Pa H

2L 20 o H(=-D)T2+ HA- =In[-2])T- A- —-=0 A3
= = (2 ) ( ” [ H 1) " (A3)

To analyze the VMI system, we need only set A= A, H= p andP = P,,in (A2) and (A3). We
will call the resulting optimal valuesas (s’, TY) and J.(s’,T") as J%.. The corresponding
optimal vaues (%, TF) for the RM| system are obtained by setting A= A, and P = P, in (A2) and
(A3). Welet J& =J. (S5, TF).

Choose p=HP, /P . Thischoiceof p impliesthat (s, + DTy)Ty = (s + DTR)Tr

- DT H HD
Writing H(s+ 7) = ?[(s+ DT)T] —7T , We have:

1
-I-_R
1 1, HD
+H[(s' + DT)TY](= - —=) + —(TR-TV
[( T —rr) + )

J;;_JSFé :[(A +An)+(R+Pm)eaTV(SVJrDTV)](TiV_ )

Now notice that solving (A4) yields

Poya 4P AL L
DA D )

1 _Pa 1
(aln[H]_1)+\/(1_aln[ 2

T=

D
2~

Furthermore, by setting p = HP/P; and comparing T” and TX using the above equation, we

obtain T > T if AwA: > Py/Pr. Thisimmediately impliesthat J3. -J5. <0. [



