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Appendix: Proofs of all results

Observation 2.1:

We first show that the two constraints in (P) are satisfied if and only if Ar < Am.

In the VMI system, when the retailer announces a rent , the manufacturer picks the order

quantity 2 /V
mQ A D  and his total cost is 2V

M mJ A D . The corresponding cost of the

retailer is R ( )VJ S  , where ( )
( )
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mr m

m

H A DA A D
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A






  . On the other hand, in the RMI

system, the retailer’s optimal order quantity is HDAQ r
R /2 and the corresponding costs of

the retailer and the manufacturer are 2R
R rJ A DH and

2
R
M m

r

HD
J A

A
 , respectively. We need

to find a rent such that V R
M MJ J and V R

R RJ J . Note that the former can be true if and only if

*.
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   Now, if Ar < Am,

*( ) ( ) 2
8r m r

r

DH
S A A A DH

A
     R

RJ ,

Thus, if Ar < Am, we have shown that there exists a rent parameter * that ensures that the VMI

system is better for both players.

To finish the proof, let Ar > Am. ( )S  has a unique minimum at
~

m

r m

HA
A A




decreasing

when
~
  and increasing when

~
.  We finish the proof by noting that ( ) R

RS J  when Ar

< Am, and
~

*  .
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To solve (P), we thus focus on the case when Ar < Am. In this case, note that ( )S  is a decreasing

function. Thus (P) is solved at *  . To show that this does not coordinate the channel, we

observe that m

r m

A H
A A




is the unique rent that coordinates the channel.

Lemma 3.1: 
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Integrating by parts and canceling common terms, we get:
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Lemma 3.2: Since the cost functions ( , ),C
SCJ Q r ( , ),V

MJ Q r and ( , )R
RJ Q r are quite similar, we

will look at a general cost function of the following form:

( , ) / ( ) [ ( ) ] /
r

J Q r AD Q Q r f x dx PD Q 


   

Since the sum of convex functions is convex, to show that ( , )J Q r is jointly convex, it suffices to

show that QPDdxxfrQb
r

/])([),( 


 is jointly convex in ),( rQ .

Let H(Q, r) be the Hessian matrix of b(Q, r). To show convexity, we need to show

positive semi-definiteness of H. Since we have a 2x2 matrix, it is enough to show that the

determinant and the diagonal entries are positive. From the above expressions it is clear that the
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latter is true. Now, WLOG, set PD = 1. The lead time demand is xexf )( , 0 and for

ease of exposition and WLOG, ignore the constant term β. We then have the following:
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The diagonal terms of this Hessian H(Q, r) are again positive. Also, note that

)),(( rQHDet rr eerfrFrf  222 2)]([))(1)((20  .

This implies convexity.

Observation 3.1: Using equations (8) and (9) in section 3, we have

21
1 1 2 /V

mQ DA  

     
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It is immediate that in general, there is no such that QV = QC and rV = rC simultaneously.

Theorem 3.1: (1) We will start with the case where a penalty is incurred for every stockout

occasion. We need to show that there exists a rent such that ( , ) ( , )V V V R R R
SC SCJ Q r J Q r . We

will demonstrate this by taking two cases.

Case 1: Let Am/Pm Ar/Pr. Consider a rent such that rV = rR = r. From (5) and (8), we have

R
V m
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Q HP
Q

P


This implies that QV QR since Am/Pm Ar/Pr. We then have:
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Taking the difference and canceling common terms, we have,
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( , ) ( , ) {(1 )[( ) ( ) ( ) ( / ( ) )]}V V R R m
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Rearranging terms and canceling common ones, we have,
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Note that the expression in [.] is positive because Pr Pm. Since our choice of rent implies that

1V R m

r

HP
Q Q

P 
   , we are done.

Case 2: Let Am/Pm < Ar/Pr.

Consider a rent such that QV = QR = Q. As before, taking the difference and canceling

common terms, we have:
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Set Pm/Pr = y and Am/Ar = x. Let 1)ln()(  yx
y
x

x
yxG . We then have

( , ) ( , ) ( ).V V R R
SC SC

HJ Q r J Q r G x


 

G(x) is a convex function and has a unique minimum at x = y/(y+1) < 1. Further, G(y) = 0 and

Pm/Pr = y 1. G(x) has another zero at some x* < y. Hence, it is easy to see that G(x) 0 when x

[x*, y] and is positive everywhere else. By our assumption x y. To finish the proof, we need

to ensure that x x*. As y increases, x* decreases. When y = 1, we get x*= 0.203 and this

corresponds to Ar = 4.9Am. Hence, if Ar 5Am, we can ensure that G(x) 0.

(2) Now consider the case where a penalty cost for a stockout is incurred for every unit

stocked out. In this case, the total cost of the supply chain is:
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( , ) ( ) / ( / 2 ) ( ) ( ) /C
SC r m m rJ Q r A A D Q H Q r P P n r D Q       .

The only difference in the cost function is that we have n(r) instead of ).(rF From Lemma 1,

./)()( rFrn  Also, )(rF =   /)(/ rfe r  . So, it can be shown easily that the only

difference in the proof for this case, relative to the earlier one, is that we replace )(rF with n(r)

and f(r) with )(rF . 

Theorem 4.1:

We analyze the case when the production rate is greater than D but finite. As mentioned in the

discussion following Theorem 4.1, the case of infinite production simply yields X=0 in the

discussion below.

To prove (1) we need only produce a pair (, ) that results in channel coordination. For a given

pair (, ), the manufacturer's optimal response (Q, r),when D satisfies the following pair of

equations:

2 2 ( ) / 2 0

( ) 0

m m

m

A D P D
F r X

Q Q
P D f r
Q






   

  
(A1)

Let the centralized system or first best solution be (QC, rC). It is clear that there is a unique pair

(*, *) that satisfies the pair of equations (A1), when we set (Q, r) = (QC, rC). But we do not

claim that this solution can allocate fractions of the savings such that the participants do better

than in a RMI system. However, combined with side payments, the contract can allocate the first

best profit arbitrarily to the players.
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To prove (2), we produce a (, ) 0 such that both players are better in the VMI system than in

the RMI system. We will represent the manufacturer’s optimal response in the VMI system by

(QV,rV), which satisfies equation (A1) above.

We will denote by (QR, rR) the decisions made by the retailer in an RMI system. The player’s

costs in the VMI and RMI systems are denoted, as before, by , , , andV V R R
M R R MJ J J J . We need

to show that there exists a contract S1 or equivalently a pair (, ) such that 0V R
M MJ J  and

0V R
R RJ J  . First choose (, ) 0 such that QV = QR. Note that the expression for QR is the

same as when the production rate was infinite.

Using  
2/
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So, for any > 0, there exists > 0 such that QV = QR = Q. Now, let

[ ( ) ( )] ( / 2)V R V R Vm
M M

P DY J J F r F r X Q r
Q

       
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        

Using /)()( rfrF  , we have RV QQ   )()( V

r

mR rF
P
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
 and writing Y as a function of :
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But Y()  - and 0)( 
r

m
P

HPY , and Y continuous for > 0 implies that there exists a * > H

such that Y(*) < 0. But notice that if Y 0 and , > 0 then 0)()(  RV rFrF . Thus when =

*, we have Z0. This finishes the proof. 

Lemma 5.1: Part (1) of the lemma is straightforward, so we will prove part (2) of the lemma.,

Without any loss of generality and for ease of exposition, we ignore the constant multiplier βin

the demand density function in the proof.

To show joint convexity, we need the positive definiteness of the Hessian.

Let the Hessian matrix be denoted by .2,1,);(),(  jigTQG ij





Q

yTedyeyg  23
11 ; QTTeg   2

22 ; QTQegg   2
2112 ;

Clearly, the diagonal elements are positive. The determinant of the Hessian is given by the

following expression:

.0)(

)()(

2425

2425



















QT

Q

yTQT

QT

Q

yTQT
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





Thus the Hessian is positive definite.

Theorem 5.1: The total supply chain cost of the system as a function of (s, T) is given by:

( ) ( )
( , ) ( ) ( , )

2
r m r m

SC
s DT

A A DT P P
J s T H s f y T dy

T T





 
    

This total system cost function will be used to compare the two systems, VMI and RMI, though

the values of (s, T) would be different in the two cases. From Lemma 5.1, we have convexity of

the cost function. Convexity of the cost function implies that the optimal decisions can be
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obtained by solving simultaneously the two first order conditions. Again, without any loss of

generality, we ignore the constant multiplierβin the demand density function for ease of

exposition. So, we have:

( )0 T s DTSCdJ He
ds P




    ; (A2)

2
2

10 ( 1) (1 ln[ ]) 0
2

SCdJ D P HH T H T A
dT H


 

        (A3)

To analyze the VMI system, we need only set A = Am, H = and P = Pm in (A2) and (A3). We

will call the resulting optimal values as (sV, TV) and ( , )V V
SCJ s T as .V

SCJ The corresponding

optimal values (sR, TR) for the RMI system are obtained by setting A = Ar and P = Pr in (A2) and

(A3). We let ( , )R R R
SC SCJ J s T .

Choose /m rHP P . This choice of  implies that (sV + DTV)TV = (sR + DTR)TR.

Writing T
HD

TDTs
T
HDT

sH
2

])[()
2

(  , we have:

( ) 1 1
[( ) ( ) ]( )

1 1[( ) ]( ) ( )
2

V V VV R T s DT
SC SC r m r m V R

V V V R V
V R

J J A A P P e
T T

HDH s DT T T T
T T

      

    

Now notice that solving (A4) yields
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Furthermore, by setting = HPm/Pr and comparing TV and TR using the above equation, we

obtain TV > TR if Am/Ar > Pm/Pr. This immediately implies that 0V R
SC SCJ J  . 


