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Proof of Lemma 1. We first prove part 1. If 3 = 0, then h(6,3) = 0 for all §. Hence
0 is the unique fixed point. In the remainder of the proof, we consider the case g > 0. To
establish the existence of a fixed point, observe that h(:, 3) is continuous and 0 < A(-, 5) < 1,
so h(-, ) must have at least one fixed point 6 on [0, 1].

We have assumed that ¢ > D(p1) =1 —py, so [c — d1(0)]T = ¢ — dy(0), and

h(9, 3) = min {%, 1} (58)

If ¢ > D(py) then differentiating (58) with respect to 6 shows that (-, 3) is non-increasing
in 0, and thus the fixed point is unique.

Next consider the case D(p1) < ¢ < D(ps). Here (58) reduces to h(6,3) = Blc —
di1(0)]/[D(p2) — di(0)]. Let f(0) = h(6, ). Substituting for d;(0) yields

D(p;) — ¢
D(p2) — aD(py) — aD(r(f))

f0) = pl1- —0 (59)

Showing that the fixed point of A(-, 3) is unique is equivalent to showing that f(#) takes
the value 0 exactly once. It suffices by the Poincaré-Hopf Index Theorem (see, e.g., page 48
of Vives 1999) to show that f(6) always approaches 0 from above (more formally, f'(#) <0
whenever f(0) = 0). To this end, note first that f(6) < 0 for § < 6 < 1, therefore f() can
equal 0 only on [0, 5]. We have

aB[D(p2)—cl(p1—p2) - )
df(6) _ ] wo-abei-apeayza—er 1 H0<0<0
a0 -1 if 0 <0<1.

Using (59) and D(p) =1 —p for p € [0, 1], we get

a(8-6)2(p1—p2) ;
_ ) soepapg — L HO<0
F6)—0 ith<0

6
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It can be checked that g(0) is strictly decreasing on [0, §]. Furthermore,

o) = =2y

If g(0) < 0, then the fact that g(f) is decreasing implies that df(@)/d9|f(9):0 < 0; ie.,
f(0) approaches 0 only from above. Hence f(#) only take the value 0 once.
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If g(0) > 0, we show that it is only possible for f(€) to take the value 0 where g(#) < 0.
Let ¢ = min{6 : f(¢) = 0}. Because
D(pa) — ¢
D(p2) — D(p1)
it follows that f(6) must approach 0 from above at ¢’. This implies that g(’) < 0. Since
g(0) is strictly decreasing, we have g(#) < 0 for 6 > 0’. Hence f(#) takes the value 0 only

> 0,

F0) =51~

once. This completes the proof of part 1.

For part 2, we consider two cases.
Case 1, D(p1) < ¢ < D(pz2): To show © is an interval, it suffices to show that the implicit
function () determined by (23) is continuous. Lemma 1 implies that the function 6(3) is
a well-defined function of 4. From (23) and the expression for h(6,3) in (59), 0(3) has an
inverse given by ((6) = 0/[1 — t(9)], where

D(p2) —c
D(ps) — aD(py) — aD(r(6))

Since r(#) is continuous in 6 and D(+) is continuous, we have that 3(f) is continuous. Hence

t(0) =

6(5) is continuous. The fact that © is an closed interval follows from the fact that the set
of 8 values [0, 1] is closed. Furthermore, it is easy to see that #(0) = 0 hence 0 € ©. This
completes the proof for case 1.

Case 2, ¢ > D(p2): For ¢ > D(p2), we have t(f) < 0 and

h(0.5) = min{G[1—t0)],1}
BIL—t(6)] 0<B<1/[1—t(6)
1 g>1/[1—t0)].
From the definition of O,

© 2 {6: h(9,3) =0 for some § € [0,1/[1—t(F)]]} = O1.

Arguments similar to those used in the proof of case 1 can be used to show that ©; is an
interval of the form [0, §] for some § € [0,1]. Furthermore, it can be checked that 0 and 1
belong to ;. Therefore, [0,1] € ©; C O. Using the fact that © C [0, 1], we conclude that
© = [0, 1]. This completes the proof for case 2. [

Proof of Lemma 2. Lemma 1 shows that if ¢ > 1 — po, then § = 1. In the following, we
consider the case 1 — p; < ¢ < 1 — py. Starting from the definition of h(6, ) in (23) and

after some algebra, we obtain

hi(0,8) f0<6<0
0.8) ifd<6<1



where

B (1—p2—c)(1—10)
h(0,8) = 5{1— <p1_p2)(1—9a>]
o) = -]

Since h(0, 3) is increasing in 3, and h(-, 3) has a unique fixed point for each (3, a geometrical
argument can be used to show the fixed point of h(-, 3;) is greater than the fixed point of
h(-, B2) if B1 > (2. Therefore, # is the solution of the equation h(f,1) = 6.

To solve h(,1) = 6, we first consider hy(0,1) = 0. If o = 0, we obtain § =1 > A. So

~

there is no solution to h(#,1) = 6 on [0,0]. If 0 < a < 1, we obtain

c—1+p1

6= )
04(]01 —pz)

(60)
If ¢ < ¢y, then the right hand side of (60) is no larger than @ in which case (60) gives the
solution of h(6,1) = 6. If ¢ > ¢;, the right hand side of (60) is greater than 6, and therefore
is not a solution of h(f,1) = 6 on [0, 5]
Next, we consider hy(0,1) = 0. If 0 < o < 1, we obtain
0 — c+app —«
apr —p2+1—«

Note that when ¢ > ¢;, the right hand side above is greater than 0. [ ]

Proof of Proposition 8. The proof is largely based on the proof in the infinite capacity

case. In the following, we provide a brief outline. By (36)

w'™ = max U(h)

0<6<6

max {maxoéeégllf(ﬁ),manS@Sé \11(0)} if >
S

From the proof of Proposition 4, ¥(6) is linear increasing for 6

w :{ max{maxogegg\llw),\l’(é)} i

Let Z = (p1 — 0ps)/(1 — ). Observe that z < 1 for § € [O,é\} and z > 1 for 0 € [5, 1]. Asin

the proof of Proposition 4, the optimization problem (34) can be written as

WP — R+ (p1 — p2) max,, <u<z F() ifz <1 (61)
R+ (p1 — p2) max {max,, <,<1 F(2),(1-0)Q(0)} if 7> 1,
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where F(+) is defined in (43). There it is shown that F(z) is concave on [py, 1].

Part (i), a = 1: Here all customers are myopic and it is straightforward to show that §** = 6.

Part (i), o = 0: Here all customers are strategic. From Lemma 2, § = ¢/(1 — py) > 6. After

some algebra, we obtain

1—
w =R+ (p —pz)max{l — D1 — D2, —M} :
T — P2
The result in (38) can now be easily verified.

Part (iii), 0 < @ < 1: An optimal solution for (61) can be obtained based on the solution in

the infinite capacity case. Once we have z** that maximizes (61), we can get an optimal
solution to (34) by taking 6** = (z** — p1)/(x*™ — py). The details are omitted. n
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