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Proof of Lemma 1. We first prove part 1. If β = 0, then h(θ, β) = 0 for all θ. Hence

0 is the unique fixed point. In the remainder of the proof, we consider the case β > 0. To

establish the existence of a fixed point, observe that h(·, β) is continuous and 0 ≤ h(·, β) ≤ 1,

so h(·, β) must have at least one fixed point θ on [0, 1].

We have assumed that c > D(p1) = 1 − p1, so [c − d1(θ)]
+ = c − d1(θ), and

h(θ, β) = min

{
β[c − d1(θ)]

D(p2) − d1(θ)
, 1

}
(58)

If c ≥ D(p2) then differentiating (58) with respect to θ shows that h(·, β) is non-increasing

in θ, and thus the fixed point is unique.

Next consider the case D(p1) < c < D(p2). Here (58) reduces to h(θ, β) = β[c −
d1(θ)]/[D(p2) − d1(θ)]. Let f(θ) = h(θ, β). Substituting for d1(θ) yields

f(θ) = β

[
1 − D(p2) − c

D(p2) − αD(p1) − ᾱD(r(θ))

]
− θ (59)

Showing that the fixed point of h(·, β) is unique is equivalent to showing that f(θ) takes

the value 0 exactly once. It suffices by the Poincaré-Hopf Index Theorem (see, e.g., page 48

of Vives 1999) to show that f(θ) always approaches 0 from above (more formally, f ′(θ) < 0

whenever f(θ) = 0). To this end, note first that f(θ) < 0 for β < θ ≤ 1, therefore f(θ) can

equal 0 only on [0, β]. We have

df(θ)

dθ
=

{
ᾱβ[D(p2)−c](p1−p2)

[D(p2)−αD(p1)−ᾱD(r(θ))]2(1−θ)2
− 1 if 0 ≤ θ < θ̂

−1 if θ̂ ≤ θ ≤ 1.

Using (59) and D(p) = 1 − p for p ∈ [0, 1], we get

g(θ) =
df(θ)

dθ

∣∣∣∣
f(θ)=0

=

{
ᾱ(β−θ)2(p1−p2)
β(1−θ)2(1−p2−c)

− 1 if 0 ≤ θ < θ̂

−1 if θ̂ ≤ θ ≤ 1.

It can be checked that g(θ) is strictly decreasing on [0, β]. Furthermore,

g(0) =
ᾱβ(p1 − p2)

1 − p2 − c
− 1.

If g(0) < 0, then the fact that g(θ) is decreasing implies that df(θ)/dθ|f(θ)=0 < 0; i.e.,

f(θ) approaches 0 only from above. Hence f(θ) only take the value 0 once.
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If g(0) ≥ 0, we show that it is only possible for f(θ) to take the value 0 where g(θ) < 0.

Let θ′ = min{θ : f(θ) = 0}. Because

f(0) = β

[
1 − D(p2) − c

D(p2) − D(p1)

]
> 0,

it follows that f(θ) must approach 0 from above at θ′. This implies that g(θ′) ≤ 0. Since

g(θ) is strictly decreasing, we have g(θ) < 0 for θ > θ′. Hence f(θ) takes the value 0 only

once. This completes the proof of part 1.

For part 2, we consider two cases.

Case 1, D(p1) < c < D(p2): To show Θ is an interval, it suffices to show that the implicit

function θ(β) determined by (23) is continuous. Lemma 1 implies that the function θ(β) is

a well-defined function of β. From (23) and the expression for h(θ, β) in (59), θ(β) has an

inverse given by β(θ) = θ/[1 − t(θ)], where

t(θ) =
D(p2) − c

D(p2) − αD(p1) − ᾱD(r(θ))
.

Since r(θ) is continuous in θ and D(·) is continuous, we have that β(θ) is continuous. Hence

θ(β) is continuous. The fact that Θ is an closed interval follows from the fact that the set

of β values [0, 1] is closed. Furthermore, it is easy to see that θ(0) = 0 hence 0 ∈ Θ. This

completes the proof for case 1.

Case 2, c ≥ D(p2): For c ≥ D(p2), we have t(θ) ≤ 0 and

h(θ, β) = min {β [1 − t(θ)] , 1}

=

{
β [1 − t(θ)] 0 ≤ β ≤ 1/[1 − t(θ)]

1 β > 1/[1 − t(θ)] .

From the definition of Θ,

Θ ⊇
{
θ : h(θ, β) = θ for some β ∈

[
0, 1/[1 − t(θ)]

]}
≡ Θ1.

Arguments similar to those used in the proof of case 1 can be used to show that Θ1 is an

interval of the form [0, θ̄] for some θ̄ ∈ [0, 1]. Furthermore, it can be checked that 0 and 1

belong to Θ1. Therefore, [0, 1] ⊆ Θ1 ⊆ Θ. Using the fact that Θ ⊆ [0, 1], we conclude that

Θ = [0, 1]. This completes the proof for case 2.

Proof of Lemma 2. Lemma 1 shows that if c ≥ 1 − p2, then θ̄ = 1. In the following, we

consider the case 1 − p1 < c < 1 − p2. Starting from the definition of h(θ, β) in (23) and

after some algebra, we obtain

h(θ, β) =

{
h1(θ, β) if 0 ≤ θ ≤ θ̂

h2(θ, β) if θ̂ < θ ≤ 1
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where

h1(θ, β) = β

[
1 − (1 − p2 − c)(1 − θ)

(p1 − p2)(1 − θα)

]

h2(θ, β) = β

[
1 − 1 − p2 − c

1 − α + αp1 − p2

]
.

Since h(θ, β) is increasing in β, and h(·, β) has a unique fixed point for each β, a geometrical

argument can be used to show the fixed point of h(·, β1) is greater than the fixed point of

h(·, β2) if β1 > β2. Therefore, θ̄ is the solution of the equation h(θ, 1) = θ.

To solve h(θ, 1) = θ, we first consider h1(θ, 1) = θ. If α = 0, we obtain θ = 1 > θ̂. So

there is no solution to h(θ, 1) = θ on [0, θ̂]. If 0 < α ≤ 1, we obtain

θ =
c − 1 + p1

α(p1 − p2)
. (60)

If c ≤ c1, then the right hand side of (60) is no larger than θ̂ in which case (60) gives the

solution of h(θ, 1) = θ. If c > c1, the right hand side of (60) is greater than θ̂, and therefore

is not a solution of h(θ, 1) = θ on [0, θ̂].

Next, we consider h2(θ, 1) = θ. If 0 ≤ α ≤ 1, we obtain

θ =
c + αp1 − α

αp1 − p2 + 1 − α
.

Note that when c > c1, the right hand side above is greater than θ̂.

Proof of Proposition 8. The proof is largely based on the proof in the infinite capacity

case. In the following, we provide a brief outline. By (36)

wFP = max
0≤θ≤θ̄

Ψ(θ)

=

{
max0≤θ≤θ̄ Ψ(θ) if θ̄ ≤ θ̂

max
{

max0≤θ≤
�

θ Ψ(θ), max �

θ≤θ≤θ̄ Ψ(θ)
}

if θ̄ > θ̂.

From the proof of Proposition 4, Ψ(θ) is linear increasing for θ ∈ [θ̂, 1]; hence

wFP =

{
max0≤θ≤θ̄ Ψ(θ) if θ̄ ≤ θ̂

max
{

max0≤θ≤
�

θ Ψ(θ), Ψ(θ̄)
}

if θ̄ > θ̂.

Let x̄ = (p1 − θ̄p2)/(1 − θ̄). Observe that x̄ ≤ 1 for θ ∈ [0, θ̂] and x̄ > 1 for θ ∈ [θ̂, 1]. As in

the proof of Proposition 4, the optimization problem (34) can be written as

wFP =

{
R + (p1 − p2) maxp1≤x≤x̄ F (x) if x̄ ≤ 1

R + (p1 − p2) max
{
maxp1≤x≤1 F (x), (1 − θ̄)Ω(θ̄)

}
if x̄ > 1,

(61)
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where F (·) is defined in (43). There it is shown that F (x) is concave on [p1, 1].

Part (i), α = 1: Here all customers are myopic and it is straightforward to show that θ∗∗ = θ̄.

Part (ii), α = 0: Here all customers are strategic. From Lemma 2, θ̄ = c/(1− p2) > θ̂. After

some algebra, we obtain

wFP = R + (p1 − p2) max

{
1 − p1 − p2,−

(1 − p2)p2

x̄ − p2

}
.

The result in (38) can now be easily verified.

Part (iii), 0 < α < 1: An optimal solution for (61) can be obtained based on the solution in

the infinite capacity case. Once we have x∗∗ that maximizes (61), we can get an optimal

solution to (34) by taking θ∗∗ = (x∗∗ − p1)/(x∗∗ − p2). The details are omitted.
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