POMS Applied Research Challenge

Managing Risks in Federal Government Technology Projects: Does Process Maturity Matter?

Anant Mishra

School of Management George Mason University

Sidhartha Das

School of Management George Mason University

James Murray

IS&GS Security
Lockheed Martin

POMS Annual Conference May 9th 2014, Atlanta

Motivation: Federal IT Projects

Federal IT initiatives organized in the form of large IT projects

- Healthcare Marketplace Implementation
 Department of Health & Human Services
- Navigation systems for missiles
 Department of Defense (DOD)
- Web-based SCM system
 Department of Agriculture (USDA)

Federal IT Portfolio

26 Agencies, 7248 IT investments
Annual Budget ≈ \$79 Billion

Office of Mgmt. & Budget (OMB) 2011 Report

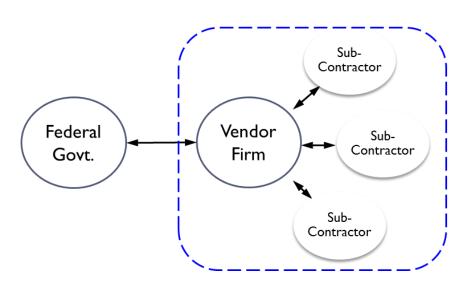
Motivation: Project Risks in Federal IT Projects

Risk management presents a dominant challenge in Federal IT projects (McKinsey 2012 Study)

Fiscal	Number of	Associated	Number of	Associated	% of federal	% of
Year	major federal	Budget	Management	Budget	technology projects	budget
	technology	(\$ in Billions)	Watch List	(\$ in Billions)	on Management	
	projects		projects		Watch List	
2004	1400	\$59.0	771	\$20.9	55%	35%
2005	1200	60.0	621	22.0	52	37
2006	1087	65.0	342	15.0	31	23
2007	857	64.0	263	9.9	31	15
2008	840	65.0	346	14.0	41	22
2009	810	70.7	585	27.0	72	38

Projects span 15 departments and would cost \$30B if continued

White House targets \$30 Billion (72%) in high-risk IT programs (Federal Computer Week 2010)


Motivation: Legislations and Standards

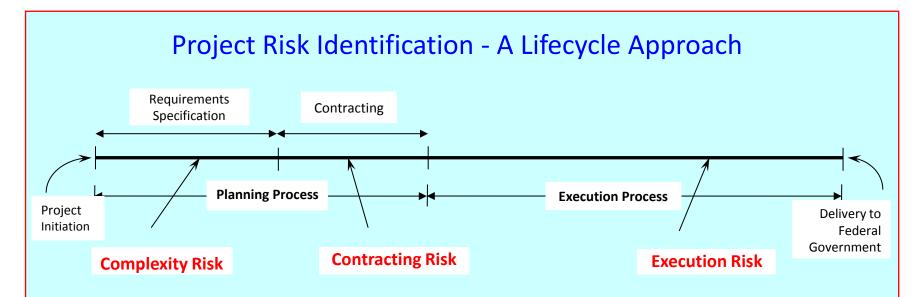
Year	Legislations/Standards	Purpose		
1993	Government Performance & Results Act (GPRA)	To set goals, measure results, and report progress		
1993	Federal Acquisition Streamlining Act (FASA)	For bidding and the contracting process for Federal investments		
1996	Clinger-Cohen Act (CCA)	To clearly link IT investments and accomplishments		
1998	ANSI/EIA-748 Earned Value Management Standard	For evaluating project progress and performance		
2002	E-Government Act	Establishes a Federal CIO within the OMB		

"As the Obama administration steps up oversight...contracting organizations must take greater responsibility...That is where one of the latest offerings from the Software Engineering Institute can help"

(Federal Computer Week 2010)

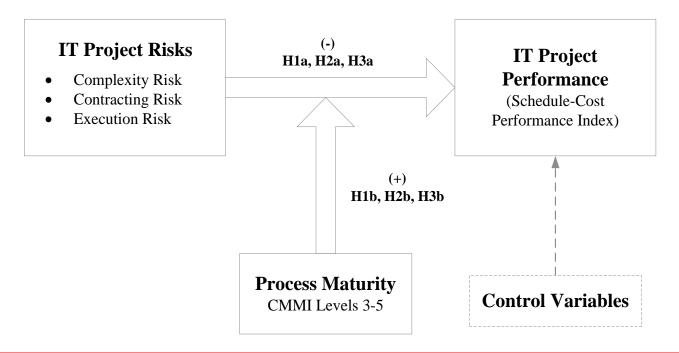
Motivation: Focus on Process Maturity

- Key criteria for awarding Federal IT contracts (Brown 2007)
- Recognized as a measure of vendors ability to deliver mission-critical IT solutions (Ramasubbu et al. 2008, Krishnan et al. 2000)



Capability Maturity Model Integrated - Formal process model for managing IT projects

SEI CMMI Levels				
Level 5	Optimizing			
Level 4	Quantitatively Managed			
Level 3	Defined			
Level 2	Managed			
Level 1	Initial			


Purpose of the Study

- 1. Identify Key Risks in Federal Technology Projects, and
- 2. Examine the Role of Process Maturity in Mitigating Project Risks

- Complexity Risk: arises due to technical challenge/scope of the project
- Contracting Risk: arises due to scale of contracting work
- Execution Risk: arises from disruptions/uncertainties during project execution

Conceptual Framework: Hypotheses

Impact of Process Maturity

- Enables <u>codification</u> of an organization's information and risk management practices, enables ease of <u>information retrieval</u> and <u>information processing</u>
- Provides guidelines for vendor selection reduces adverse selection issues
- Systematic monitoring of problem solving efforts by project team

Research Context: Lockheed Martin

LOCKHEED MARTIN

- Fortune 100 High-Tech Firm
- Defense, Aerospace and Security Systems
- Domestic presence (500 facilities)
- Global presence (75 countries)

82 IT Projects over 519 quarters

Project Characteristics (Median values)

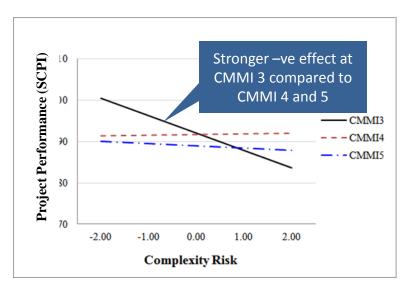
- Project Team Size 40 (FTE)
- Project Budget \$35 million (Max = \$1.5Billion)
- Project Duration 5 Quarters (~15 months)
- Project Subcontracting 20%
- Number of Subcontractors 2

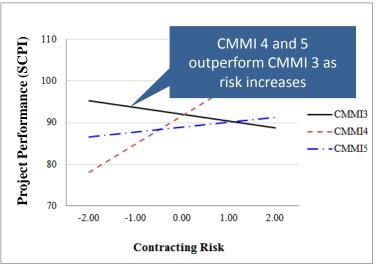
Research Design: Key Variables

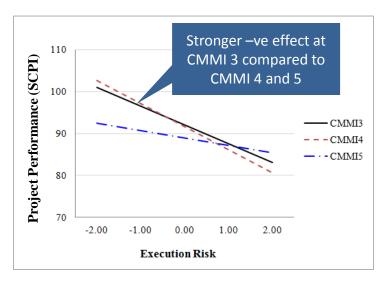
	Mean	Std. Dev
Schedule-Cost Performance Index (SCPI)		
Schedule Performance Index	0.91	0.13
Cost Performance Index		
Complexity Risk		
Project Uncertainty		
(1 = Low, 3 = Med, 5 = High)	3.10	1.19
Project Scope		
(1 = Assembly, 3 = System, 5 = Array)		
Contracting Risk		
Sub-contracting %	1.18	2.28
 Number of Sub-contractors 		
Execution Risk	17.70	20.21
 Number of execution risks on risk register 	17.70	20.21
Process Maturity		
• CMMI Level 3, CMMI Level 4, CMMI Level 5		

1993 Government Perf. & Results Act (GPRA)

1998 ANSI/EIA-748 Earned Value Management Standard


Control Variables


- Project Team Size
- Project Budget
- Project Labor
- Project Priority
- Customer Review
- Change Order


Econometric Analysis: Results

Independent Variables	Column 1	Column 2	Column 3	
Program Risks				Main Effects
Complexity Risk		-1.158***	-4.203**	H1a: Complexity Risk
Contracting Risk		0.633	-1.625†	H1b: Contracting Risk
Execution Risk		-4.288**	-4.453**	H1c: Execution Risk
Process Maturity Level				
CMMI Level 4		-0.345*	-0.353	
CMMI Level 5		-2.827***	-3.082***	
Interaction Effects				
Complexity Risk × CMMI4			4.358***	Interaction Effects
Complexity Risk × CMMI5			3.660***	
				H2a: Complexity Risk
Contracting Risk × CMMI4			8.414***	H2b: Contracting Risk
Contracting Risk × CMMI5			2.813**	H2c: Execution Risk
Execution Risk × CMMI4			-1.056	
Execution Risk × CMMI5			2.695**	
Chi-Square	149.87***	313.64***	342.06***	
df	8	13	19	
Δ Chi-Square		163.77***	28.42***	
Program-Quarter	519	519	519	*p<0.1, **p< 0.05, ***p < 0.01
Program	82	82	82	p.0.1, p.0.03, p.0.01

Analysis: Interaction Effects

Analysis: Financial Implications

Potential Overrun/Underruns: Median Project Budget = \$35 Million

Risk Levels (in Mean ± SD)		Project Performance (in SCPI)						
		CD 4D 41 CD 4D 41	CNANAL	CMMI	ΔSCPI		ΔEAC^*	
		CMMI	CMMI		CMMI	СММІ	CMMI	CMMI
		3	4	5	4 – 3	5 – 3	4 – 3	5-3
Low	-2.00 112.8	112.06	12.86 89.09	91.44	-23.77	-21.42	-\$8.27	-\$7.26
Low		112.80					Million	Million
Average	0.00 02.20	02.20	01.05	00.22	0.25	0.35 -3.08	\$0.14	-\$1.31
Average	0.00	92.30	91.95	89.22	-0.35		Million	Million
11:-1-	2.00	2.00 71.74 94.81	07.00	22.07	45.26	\$11.87	\$8.56	
High			94.81 87	87.00	23.07	15.26	Million	Million

^{*}ΔEAC – Estimated Savings at Completion

Conclusion – Key Findings and Contributions

- Develop a Framework for Examining Risks in Federal IT Projects
 - Contributes to the scant empirical literature on Federal IT projects
 - Complexity Risks and Execution Risks have significant negative impact on Project Performance
- Examining the Role of Process Maturity Model in Mitigating Performance Risks
 - Questions the notion that mature processes are always better
 - Significant negative direct effects of process maturity
 - Benefits of process maturity manifest when project risks are high

Maturity Levels and Federal IT Projects

Low Risk

Project Risks Complexity Risk, Contracting Risk, Execution Risk

High Risk

Where CMMI 3 is more likely to be beneficial

- Fiber-optic Motion Sensor for Joint Strike Fighter, Hubble Telescope
- GPS Module for Surface-to-Air Missile
- Web interface for 2013 Health Insurance Marketplace

Where CMMI 4, 5 is more likely to be beneficial

- Navigation System for Joint Strike Fighter, Hubble Telescope
- Altitude Control System for Surface-to-Air Missile
- Implementation of 2013
 Health Insurance Marketplace

Stay at CMMI Level 3? Or Move to Levels 4 and 5?

- Beyond Level 3, organizational processes are onerous
 - Tail wags the dog (large Program Management Office)
- Large overheads tax Federal IT projects
- Many government agencies (and clients) cannot participate at Level 5
- Moving to Levels 4 and 5—Is it worth it during "sequestration"?

Decision should be based on project risk portfolio

Problems with Project Assessment Systems

- In Practice Managerial Reporting of Risk
 - Primarily uses Traffic Light Approach (R,Y,G)
- Balanced Scorecard Approach
 - Trade-off consistency and relevance to programs
- Sifting data to get at the right data
- Management, Risk Process are linked but vary
 - depending upon management perspective:
 - strategic, tactical, or sponsor

Over reliance on CMMI Metrics can be Counterproductive

Evolution of IT and PM Processes

Complexity, Contracting, and Execution Risks will Persist!

- Evolution of IT Processes
 - Agile emphasis (today)
 - Focus on demonstrated value "up-front"
 - Can CMMI be tailored to Agile?
- Evolution of PM Processes
 - Firms need to use a portfolio of PM processes
 - New methods require organizational "tailoring"

Federal Contractors needs to assess both IT and PM processes to remain competitive

PM processes must be aligned with IT processes and risk

Prescriptions for Practice

- Study provides insights into the context of Federal IT projects
 - which are largely understudied in research and practice
 - \$80 billion/year of tax-payer contributions invested in federal IT projects
- Identify a Framework for Classifying Project Risks
 - Use an intuitive framework for identifying project risks
 - Focus on Complexity and Execution Risks as they have strong negative effects on performance
- Does Process Maturity Matter? Higher CMMI levels reduce these negative effects
 - CMMI 3 is more likely to be beneficial at low risk projects
 - CMMI 4 and 5 are more beneficial at high risk projects

Get to level 3. Then decide on going to higher levels – based on project risk portfolio

Questions

Dr. Anant Mishra

Dr. Sid Das

Dr. Jim Murray

- amishra6@gmu.edu

- sdas@gmu.edu

- jmurray8@gmu.edu