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Background in Biomanufacturing

Biomanufacturing: Manufacturing methods to produce biologicals.

I Vaccines, hormones, proteins, insulin, tissues, etc.
I Treatment of cancer, autoimmune diseases, strokes, blood diseases, etc.

Key facts (Pharmaceutical Research and Manufacturers of America, 2015)

I Over 7000 drugs in R&D. 325 million patients worldwide.
I 83% survival gains in cancer patients since 1990.
I Global biopharmaceutical market value of $197 billion.
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Project Overview

Collaboration with Aldevron, since February 2013.

Research objectives: Develop tools and models to reduce risks and costs in
protein purification operations.

Protein purification is a common industry challenge.

“Every protein is unique and has its own purification challenges −
many of which cannot be predicted”. Bitesizebio Blog, 2016.

“Many mistakes are made because we don’t have the right
analytics”. Technology Review, 2012.
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Protein Purification
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Objective Separate proteins from impurities.
I Exploit the size, molecular charge, hydrophobicity of the molecules.
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What is the Problem?
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Purity requirement ≥ 85%, Purity = protein (mg)
protein (mg)+impurity (mg)

Yield requirement ≥ 8 mg protein.
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What are the Challenges?

Each protein is an engineer-to-order product

Strict production requirements on purity and yield

Yield and quality trade-offs

Uncertainty in chromatography outcomes

Interlinked decisions with 2 to 6 purification steps in series
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Current Practice and Contributions
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Research impact: Replacing validation runs with a mathematical model
enables to save up to 30% of the manufacturing lead time and costs.
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Research Questions

What is the best purification strategy? Room for improvement in practice?

How to identify a “bad” starting material?

How to identify a “good” batch leading to guaranteed purity and yield?

May 6, 2016 8 / 20



The Model

Decision Epochs: Beginning of chromatography step t, t ∈ {1, . . . ,T −1}.

State Space
I pt denotes the amount of proteins of interest available in the batch at the
beginning of tth chromatography step.

I it denotes the amount of impurity at the beginning of tth step.

Actions: wt denotes choosing the pooling window wt to run the purification
step t. Action S denotes stopping the process.

State transitions estimated from scouting data.
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Costs and Rewards

Financial implications of the final batch

Costs and rewards =


Penalty for failure if purity not met,

No extra revenue if purity met & excess yield,

Penalty for shortage if purity met & yield shortage.

High operating cost at each step.
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Dynamic Programming Formulation

Finite horizon Markov decision model

Vt(pt , it) for t = {1, . . . ,T −1},

Vt(pt , it) = max
wt∈Wt

{
rS(pt , it),−ct +EVt+1(θtpt ,ψt it |wt)

}
,

VT (pT , iT ) = rS(pT , iT ),

where,

EVt+1(ptθt ,ψt it |wt) =
∫

ψu
wt

ψ l
wt

∫
θu
wt

θ l
wt

ft(θt |wt)gt(ψt |wt)Vt+1(θtpt ,ψt it)dθdψ.

Objective is to maximize the expected profit.
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Overview of Analysis & Insights
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New decision making framework for practitioners: Decision-zones.
Decision-zones provide important managerial insights and guidelines.
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Failure Zone: What is a “bad” batch?
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The biomanufacturer has no financial incentives for performing purification.

Theorem 1 (Failure Zone Ft)

The optimal policy has the property that for some (p′t , i
′
t), the optimal action is to

abandon the purification a∗t (p′t , i
′
t) = S for all states in

Ft = {(pt , it) ∈P×I : pt ≤ p′t and it ≥ i ′t}. Ft is the failure zone at t ∈T .
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Target Zone: What is a “good” batch?
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The biomanufacturer can always guarantee that there exists at least one
purification policy that meets both the purity and yield requirements.

Theorem 2 (Target Zone Tt)

TT =
{

(pT , iT ) : pT ≥ pd , iT ≤ 1−γd
γd

pT

}
, Tt =

⋃
w∈Wt

Jwt (Tt+1).
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Structural Analysis of the Optimal Policy
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Rule of thumbs based on the decision zones.

Theorem 3 (Zone-based Decision Making)

The optimal policy has the property that for some (pt , it) at step t,

If (pt , it) ∈ Ft , then the optimal action is to abandon the purification.

If (pt , it) ∈ Tt , then choose wt to keep the state within the target zone.

If (pt , it) ∈ Rt , then choose wt to meet purity with minimal yield losses.
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Implementation at Aldevron: An Example
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Region Range of EVt(pt , it) Business Implications

Step 1 (1) EV1(p1, i1) =−48 Failure Zone: Stop and scrap.

(2) −48 < EV1(p1, i1) < 10 Risk zone: High potential losses.

(3) EV1(p1, i1) = 10 Target Zone: Meet purity and yield in two steps.

(4) 10 < EV1(p1, i1) < 25 Target Zone: One step with lost sales.

(5) EV1(p1, i1) = 25 Target Zone: Meet purity and yield in one step.

(6) EV1(p1, i1) = 40 Terminal state: Stop.

Improvement in expected profit ranges between 18% to 25% compared to the
current practice.
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Implementation at Aldevron

Project timeline, 2013 - 2016.

Timeline Tasks

February 2013 - February 2014 Problem definition and modeling

February 2014 - June 2014 Data collection and model revisions

June 2014 - September 2014 Industry test runs

October 2014 - October 2015 Implementation and actual use

Since October 2015 Model and implementation enhancements (ongoing work)

Throughout the project Weekly company visits, working group sessions, biotech conferences

Implementation since October 2014: 20% improvement in expected profit
and purification lead time on average, due to

I Formal assessment of the starting material,
I Reducing the number of validation runs,
I Process economics taken into consideration.

Scientists using the Java tool for modeling and implementation.
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Conclusions

OR/MS tools to complement biomanufacturing and life sciences.

I End game is to drive down the health care costs.
I Positive impact on Aldevron is passed along to Aldevron’s clients.

Tools and models are scalable to global pharmaceutical practices.
I Global biopharmaceutical market value is $197 billion with 14% compound
annual growth rate, accounting for 20% of the total global pharmaceutical
market (BioPharm 2016).
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Media Coverage and Industry Collaboration

Madison biotech supplier goes lean to stave off foreign competitors, Xconomy (2014).

Company Feature: Aldevron, Wisconsin Economic Development Corporation (2014).

M&SOM student paper competition finalists, INFORMS (2015).

Four researchers receive Marie Curie grant at TU/e, Eindhovens Dagblad (2016).

When to stop the fermentation, Industrial Engineer, IIE (2016).

Aldevron collaborates with UW-Madison, BioForward (2016).
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Thank You. Any Questions?

Tugce Martagan (t.g.martagan@tue.nl)
Pete Leland (leland@aldevron.com)
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